Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015354039> ?p ?o ?g. }
- W3015354039 endingPage "2483" @default.
- W3015354039 startingPage "2483" @default.
- W3015354039 abstract "Audio equalization is an active research topic aiming at improving the audio quality of a loudspeaker system by correcting the overall frequency response using linear filters. The estimation of their coefficients is not an easy task, especially in binaural and multipoint scenarios, due to the contribution of multiple impulse responses to each listening point. This paper presents a deep learning approach for tuning filter coefficients employing three different neural networks architectures—the Multilayer Perceptron, the Convolutional Neural Network, and the Convolutional Autoencoder. Suitable loss functions are proposed for each architecture, and are formulated in terms of spectral Euclidean distance. The experiments were conducted in the automotive scenario, considering several loudspeakers and microphones. The obtained results show that deep learning techniques give superior performance compared to baseline methods, achieving almost flat magnitude frequency response." @default.
- W3015354039 created "2020-04-17" @default.
- W3015354039 creator A5034253968 @default.
- W3015354039 creator A5047789612 @default.
- W3015354039 creator A5056250981 @default.
- W3015354039 creator A5061023296 @default.
- W3015354039 date "2020-04-04" @default.
- W3015354039 modified "2023-09-30" @default.
- W3015354039 title "Designing Audio Equalization Filters by Deep Neural Networks" @default.
- W3015354039 cites W1510541118 @default.
- W3015354039 cites W1974323801 @default.
- W3015354039 cites W1975107448 @default.
- W3015354039 cites W2011153540 @default.
- W3015354039 cites W2031390600 @default.
- W3015354039 cites W2043361426 @default.
- W3015354039 cites W2062415228 @default.
- W3015354039 cites W2086514272 @default.
- W3015354039 cites W2106904053 @default.
- W3015354039 cites W2115351511 @default.
- W3015354039 cites W2123361315 @default.
- W3015354039 cites W2153167244 @default.
- W3015354039 cites W2164436186 @default.
- W3015354039 cites W2165491778 @default.
- W3015354039 cites W2707074415 @default.
- W3015354039 cites W2740194886 @default.
- W3015354039 cites W2769049990 @default.
- W3015354039 cites W2769696256 @default.
- W3015354039 cites W2770651213 @default.
- W3015354039 cites W2777602360 @default.
- W3015354039 cites W2809874426 @default.
- W3015354039 cites W2891076818 @default.
- W3015354039 cites W2963073614 @default.
- W3015354039 cites W2963341071 @default.
- W3015354039 cites W2963420272 @default.
- W3015354039 cites W3000935482 @default.
- W3015354039 doi "https://doi.org/10.3390/app10072483" @default.
- W3015354039 hasPublicationYear "2020" @default.
- W3015354039 type Work @default.
- W3015354039 sameAs 3015354039 @default.
- W3015354039 citedByCount "13" @default.
- W3015354039 countsByYear W30153540392020 @default.
- W3015354039 countsByYear W30153540392021 @default.
- W3015354039 countsByYear W30153540392022 @default.
- W3015354039 countsByYear W30153540392023 @default.
- W3015354039 crossrefType "journal-article" @default.
- W3015354039 hasAuthorship W3015354039A5034253968 @default.
- W3015354039 hasAuthorship W3015354039A5047789612 @default.
- W3015354039 hasAuthorship W3015354039A5056250981 @default.
- W3015354039 hasAuthorship W3015354039A5061023296 @default.
- W3015354039 hasBestOaLocation W30153540391 @default.
- W3015354039 hasConcept C101738243 @default.
- W3015354039 hasConcept C108583219 @default.
- W3015354039 hasConcept C11413529 @default.
- W3015354039 hasConcept C121332964 @default.
- W3015354039 hasConcept C134306372 @default.
- W3015354039 hasConcept C154945302 @default.
- W3015354039 hasConcept C157138929 @default.
- W3015354039 hasConcept C167310288 @default.
- W3015354039 hasConcept C179717631 @default.
- W3015354039 hasConcept C201247586 @default.
- W3015354039 hasConcept C24890656 @default.
- W3015354039 hasConcept C28490314 @default.
- W3015354039 hasConcept C33923547 @default.
- W3015354039 hasConcept C41008148 @default.
- W3015354039 hasConcept C50644808 @default.
- W3015354039 hasConcept C57273362 @default.
- W3015354039 hasConcept C72279823 @default.
- W3015354039 hasConcept C75755367 @default.
- W3015354039 hasConcept C81363708 @default.
- W3015354039 hasConceptScore W3015354039C101738243 @default.
- W3015354039 hasConceptScore W3015354039C108583219 @default.
- W3015354039 hasConceptScore W3015354039C11413529 @default.
- W3015354039 hasConceptScore W3015354039C121332964 @default.
- W3015354039 hasConceptScore W3015354039C134306372 @default.
- W3015354039 hasConceptScore W3015354039C154945302 @default.
- W3015354039 hasConceptScore W3015354039C157138929 @default.
- W3015354039 hasConceptScore W3015354039C167310288 @default.
- W3015354039 hasConceptScore W3015354039C179717631 @default.
- W3015354039 hasConceptScore W3015354039C201247586 @default.
- W3015354039 hasConceptScore W3015354039C24890656 @default.
- W3015354039 hasConceptScore W3015354039C28490314 @default.
- W3015354039 hasConceptScore W3015354039C33923547 @default.
- W3015354039 hasConceptScore W3015354039C41008148 @default.
- W3015354039 hasConceptScore W3015354039C50644808 @default.
- W3015354039 hasConceptScore W3015354039C57273362 @default.
- W3015354039 hasConceptScore W3015354039C72279823 @default.
- W3015354039 hasConceptScore W3015354039C75755367 @default.
- W3015354039 hasConceptScore W3015354039C81363708 @default.
- W3015354039 hasFunder F4320324632 @default.
- W3015354039 hasIssue "7" @default.
- W3015354039 hasLocation W30153540391 @default.
- W3015354039 hasOpenAccess W3015354039 @default.
- W3015354039 hasPrimaryLocation W30153540391 @default.
- W3015354039 hasRelatedWork W1578669304 @default.
- W3015354039 hasRelatedWork W1976224740 @default.
- W3015354039 hasRelatedWork W1981658125 @default.
- W3015354039 hasRelatedWork W2022215515 @default.
- W3015354039 hasRelatedWork W2033054806 @default.