Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015368317> ?p ?o ?g. }
- W3015368317 abstract "Author(s): Li, Wei-Chang | Advisor(s): Nguyen, Clark T.-C. | Abstract: This dissertation describes a MEMS-based frequency-selective power amplifier that performs both signal filtering and power amplification, while consuming zero power when there is no input, i.e., zero-quiescent power consumption. The frequency-selective power amplifier employs a micromechanical resonant switch (resoswitch) as a key building block similar to those recently used for zero-quiescent power radio receivers, but capable of handling higher powers. This document details the design, fabrication, and characterization of these higher frequency and higher power micromechanical resoswitches, and employs them as power amplifiers. Here, the mechanical Q of the resoswitch largely governs the threshold input level that instigates power gain. Theoretical and experimental studies of Q, as well as Q enhancement techniques and high-Q structural design, are discussed. Further, post-fabrication laser trimming addresses the frequency accuracy of the vibrating devices. A model that replaces laser blasted holes with stiffness-modifying cracks captures well the frequency shift dependence on laser blast location. The accuracy of this theory further enables a deterministic trimming protocol that specifies the laser targeting sequence needed to achieve a required amount of frequency tuning with minimal Q reduction. The resoswitch used to demonstrate the frequency-selective power amplifier employs slots to engineer stiffness along orthogonal axes of a wine-glass disk resonator structure. The slots realize displacement amplification—a larger displacement magnitude along the output than the input axis—allowing impact switching only to the output electrodes, not the input, all of which improves reliability. A finite element analysis (FEA)-based model predicts the displacement gain as a function of disk size and slot dimension/location.To improve impact contact resistance, this work employs metal for the slotted-disk resoswitch, achieved via a CMOS-compatible surface micromachining process that essentially replaces normally-used polysilicon material with aluminum metal, which serves as both structural and interconnect material. This not only improves contact resistance, but also reduces parasitic resistance, which in turn reduces feedthrough currents. When embedded in a switched-mode power amplifier circuit, the Al displacement-amplifying resoswitch performs signal filtering and power amplification that first filters an incoming signal with channel-like selectivity and then amplifies the signal with a power gain of 13.8 dB. More importantly, unlike transistor-based circuits, the resoswitch-based frequency-selective power amplifier consumes zero power while in standby. Measurements indicate that sputtered aluminum has high mechanical Q at low frequencies, as a folded-beam capacitive-comb-driven micromechanical resonator fabricated via the aforementioned process achieved a Q up to ∼20,000. Unfortunately, the higher frequency slotted-disk used in the displacement amplifier did not fare as well, as its Q was only on the order of 1,000. An effort to study the Q limits of different resoswitch designs included an experimental study of intrinsic loss mechanisms using cryogenic operation to enhance resonator Q and better elucidate important energy loss mechanisms. Here, operation of a 61-MHz wine-glass disk resonator at temperatures as low as 5K reduces temperature-dependent energy loss and raises Q to as high as 362,000, likely devoid of thermoelastic friction. On the other hand, introduction of slots into a wine-glass disk structure (to effect displacement gain) reduces Q by introducing thermoelasting damping, which this document models in detail. A displacement-amplifying elliptic disk solves this problem by deriving gain-induced stiffness differences from geometric ratioing rather than Q-degrading slots, which permits simultaneous displacement gain and high-Q. Finally, this work includes a study of laser trimming to trim power amplifier frequency to a desired range. Here, laser trimming offers flexible bidirectional frequency tuning with minimal effect on Q. Unlike other frequency tuning methods, laser trimming does not require added process steps, e.g., sputtering of frequency-shifting metal materials on structures. Rather, laser trimming offers precise post-fabrication frequency adjustment via blasts of controlled size and location on a given resonator. A model that captures the frequency shift dependency on laser blast location shows good agreement with measured results on micromechanical clamped-clamped (CC)-beam resonators. The theory provides a modeling framework for laser trimming applicable to other types of beam resonators, e.g., free-free beams, cantilevers, and even disks or rings by altering the boundary condition matrices." @default.
- W3015368317 created "2020-04-17" @default.
- W3015368317 creator A5029254418 @default.
- W3015368317 date "2015-01-01" @default.
- W3015368317 modified "2023-09-27" @default.
- W3015368317 title "A Micromechanical Frequency-Selective Power Amplifier" @default.
- W3015368317 cites W1495898891 @default.
- W3015368317 cites W1498828522 @default.
- W3015368317 cites W1589101711 @default.
- W3015368317 cites W1973840112 @default.
- W3015368317 cites W1974836613 @default.
- W3015368317 cites W2004512974 @default.
- W3015368317 cites W2009341850 @default.
- W3015368317 cites W2010633571 @default.
- W3015368317 cites W2012276512 @default.
- W3015368317 cites W2015621384 @default.
- W3015368317 cites W2027682817 @default.
- W3015368317 cites W2032303464 @default.
- W3015368317 cites W2032645851 @default.
- W3015368317 cites W2045342115 @default.
- W3015368317 cites W2055430408 @default.
- W3015368317 cites W2058606555 @default.
- W3015368317 cites W2061511348 @default.
- W3015368317 cites W2073593223 @default.
- W3015368317 cites W2087604725 @default.
- W3015368317 cites W2090384543 @default.
- W3015368317 cites W2100916163 @default.
- W3015368317 cites W2121147900 @default.
- W3015368317 cites W2127469103 @default.
- W3015368317 cites W2127490754 @default.
- W3015368317 cites W2129313995 @default.
- W3015368317 cites W2131954322 @default.
- W3015368317 cites W2132359014 @default.
- W3015368317 cites W2133450517 @default.
- W3015368317 cites W2138594545 @default.
- W3015368317 cites W2140936624 @default.
- W3015368317 cites W2144177371 @default.
- W3015368317 cites W2148673023 @default.
- W3015368317 cites W2154412128 @default.
- W3015368317 cites W2158588569 @default.
- W3015368317 cites W2164477080 @default.
- W3015368317 cites W2166460189 @default.
- W3015368317 cites W2169166249 @default.
- W3015368317 cites W2172200731 @default.
- W3015368317 cites W2532332699 @default.
- W3015368317 cites W2533734530 @default.
- W3015368317 cites W2545615545 @default.
- W3015368317 cites W2562641844 @default.
- W3015368317 cites W2926842680 @default.
- W3015368317 cites W2930853209 @default.
- W3015368317 cites W406703271 @default.
- W3015368317 hasPublicationYear "2015" @default.
- W3015368317 type Work @default.
- W3015368317 sameAs 3015368317 @default.
- W3015368317 citedByCount "0" @default.
- W3015368317 crossrefType "journal-article" @default.
- W3015368317 hasAuthorship W3015368317A5029254418 @default.
- W3015368317 hasConcept C107551265 @default.
- W3015368317 hasConcept C111919701 @default.
- W3015368317 hasConcept C119599485 @default.
- W3015368317 hasConcept C120665830 @default.
- W3015368317 hasConcept C121332964 @default.
- W3015368317 hasConcept C127413603 @default.
- W3015368317 hasConcept C15744967 @default.
- W3015368317 hasConcept C163258240 @default.
- W3015368317 hasConcept C194257627 @default.
- W3015368317 hasConcept C200649887 @default.
- W3015368317 hasConcept C24326235 @default.
- W3015368317 hasConcept C24890656 @default.
- W3015368317 hasConcept C41008148 @default.
- W3015368317 hasConcept C46362747 @default.
- W3015368317 hasConcept C520434653 @default.
- W3015368317 hasConcept C542102704 @default.
- W3015368317 hasConcept C56951928 @default.
- W3015368317 hasConcept C62520636 @default.
- W3015368317 hasConcept C74064498 @default.
- W3015368317 hasConceptScore W3015368317C107551265 @default.
- W3015368317 hasConceptScore W3015368317C111919701 @default.
- W3015368317 hasConceptScore W3015368317C119599485 @default.
- W3015368317 hasConceptScore W3015368317C120665830 @default.
- W3015368317 hasConceptScore W3015368317C121332964 @default.
- W3015368317 hasConceptScore W3015368317C127413603 @default.
- W3015368317 hasConceptScore W3015368317C15744967 @default.
- W3015368317 hasConceptScore W3015368317C163258240 @default.
- W3015368317 hasConceptScore W3015368317C194257627 @default.
- W3015368317 hasConceptScore W3015368317C200649887 @default.
- W3015368317 hasConceptScore W3015368317C24326235 @default.
- W3015368317 hasConceptScore W3015368317C24890656 @default.
- W3015368317 hasConceptScore W3015368317C41008148 @default.
- W3015368317 hasConceptScore W3015368317C46362747 @default.
- W3015368317 hasConceptScore W3015368317C520434653 @default.
- W3015368317 hasConceptScore W3015368317C542102704 @default.
- W3015368317 hasConceptScore W3015368317C56951928 @default.
- W3015368317 hasConceptScore W3015368317C62520636 @default.
- W3015368317 hasConceptScore W3015368317C74064498 @default.
- W3015368317 hasLocation W30153683171 @default.
- W3015368317 hasOpenAccess W3015368317 @default.
- W3015368317 hasPrimaryLocation W30153683171 @default.
- W3015368317 hasRelatedWork W1570333368 @default.
- W3015368317 hasRelatedWork W1852338833 @default.