Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015428797> ?p ?o ?g. }
- W3015428797 endingPage "112779" @default.
- W3015428797 startingPage "112779" @default.
- W3015428797 abstract "Wind speed forecasting is crucial in exploiting wind energy and integrating power grid. This study presents a novel hybrid model, which includes decomposition module with real-time decomposition strategy, forecasting module and error correction module. In this model, the raw wind speed series is decomposed with empirical wavelet transform into several subseries. The Elman neural network is employed as predictor for each subseries. In addition, a new error correction system is proposed to capture the hidden information from wind speed and enhance the forecasting capability. In the error correction system, a quasi-real-time decomposition strategy is constructed to obtain errors of each subseries. The variational mode decomposition-autoregressive integrated moving average approach is built to predict the error series and complete the error correction task. Two experiments covering eight wind speed datasets and ten compared models are utilized to verify the effectiveness of the proposed model. The results show that: (a) the developed error correction system is an effective way to enhance forecasting performance of the decomposition based model; (b) the error series can be effectively repaired to increase the forecasting accuracy by the combination of the variational mode decomposition method and the autoregressive integrated moving average method; (c) the proposed model outperforms the compared conventional models in short-term wind speed forecasting." @default.
- W3015428797 created "2020-04-17" @default.
- W3015428797 creator A5052100043 @default.
- W3015428797 creator A5057032296 @default.
- W3015428797 creator A5090004735 @default.
- W3015428797 date "2020-05-01" @default.
- W3015428797 modified "2023-10-17" @default.
- W3015428797 title "A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting" @default.
- W3015428797 cites W1185746543 @default.
- W3015428797 cites W1975783225 @default.
- W3015428797 cites W1977398352 @default.
- W3015428797 cites W2000982976 @default.
- W3015428797 cites W2019900743 @default.
- W3015428797 cites W2024692966 @default.
- W3015428797 cites W2058504886 @default.
- W3015428797 cites W2067754509 @default.
- W3015428797 cites W2074715647 @default.
- W3015428797 cites W2079522653 @default.
- W3015428797 cites W2280029926 @default.
- W3015428797 cites W2345862676 @default.
- W3015428797 cites W2484979138 @default.
- W3015428797 cites W2541289141 @default.
- W3015428797 cites W2581205918 @default.
- W3015428797 cites W2581822685 @default.
- W3015428797 cites W2611034349 @default.
- W3015428797 cites W2729912483 @default.
- W3015428797 cites W2754301221 @default.
- W3015428797 cites W2769156605 @default.
- W3015428797 cites W2776150244 @default.
- W3015428797 cites W2789989341 @default.
- W3015428797 cites W2791252587 @default.
- W3015428797 cites W2792244305 @default.
- W3015428797 cites W2792616493 @default.
- W3015428797 cites W2793187554 @default.
- W3015428797 cites W2801076518 @default.
- W3015428797 cites W2801540881 @default.
- W3015428797 cites W2804526541 @default.
- W3015428797 cites W2883208472 @default.
- W3015428797 cites W2883867434 @default.
- W3015428797 cites W2889390940 @default.
- W3015428797 cites W2891967931 @default.
- W3015428797 cites W2897446518 @default.
- W3015428797 cites W2898337160 @default.
- W3015428797 cites W2899996856 @default.
- W3015428797 cites W2900921197 @default.
- W3015428797 cites W2901310764 @default.
- W3015428797 cites W2901964425 @default.
- W3015428797 cites W2905528277 @default.
- W3015428797 cites W2906361816 @default.
- W3015428797 cites W2910279921 @default.
- W3015428797 cites W2920894825 @default.
- W3015428797 cites W2922089800 @default.
- W3015428797 cites W2944436518 @default.
- W3015428797 cites W2944487131 @default.
- W3015428797 cites W2945236236 @default.
- W3015428797 cites W2946405318 @default.
- W3015428797 cites W2955085468 @default.
- W3015428797 cites W2963599060 @default.
- W3015428797 cites W2968677983 @default.
- W3015428797 cites W2996058680 @default.
- W3015428797 cites W2997464701 @default.
- W3015428797 doi "https://doi.org/10.1016/j.enconman.2020.112779" @default.
- W3015428797 hasPublicationYear "2020" @default.
- W3015428797 type Work @default.
- W3015428797 sameAs 3015428797 @default.
- W3015428797 citedByCount "50" @default.
- W3015428797 countsByYear W30154287972020 @default.
- W3015428797 countsByYear W30154287972021 @default.
- W3015428797 countsByYear W30154287972022 @default.
- W3015428797 countsByYear W30154287972023 @default.
- W3015428797 crossrefType "journal-article" @default.
- W3015428797 hasAuthorship W3015428797A5052100043 @default.
- W3015428797 hasAuthorship W3015428797A5057032296 @default.
- W3015428797 hasAuthorship W3015428797A5090004735 @default.
- W3015428797 hasConcept C10551718 @default.
- W3015428797 hasConcept C105795698 @default.
- W3015428797 hasConcept C111919701 @default.
- W3015428797 hasConcept C11413529 @default.
- W3015428797 hasConcept C119599485 @default.
- W3015428797 hasConcept C119857082 @default.
- W3015428797 hasConcept C121332964 @default.
- W3015428797 hasConcept C122383733 @default.
- W3015428797 hasConcept C124681953 @default.
- W3015428797 hasConcept C127413603 @default.
- W3015428797 hasConcept C143724316 @default.
- W3015428797 hasConcept C151406439 @default.
- W3015428797 hasConcept C151730666 @default.
- W3015428797 hasConcept C153294291 @default.
- W3015428797 hasConcept C154945302 @default.
- W3015428797 hasConcept C159877910 @default.
- W3015428797 hasConcept C161067210 @default.
- W3015428797 hasConcept C186370098 @default.
- W3015428797 hasConcept C18903297 @default.
- W3015428797 hasConcept C24338571 @default.
- W3015428797 hasConcept C25570617 @default.
- W3015428797 hasConcept C33923547 @default.
- W3015428797 hasConcept C41008148 @default.
- W3015428797 hasConcept C48677424 @default.