Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015489690> ?p ?o ?g. }
- W3015489690 abstract "Abstract Background Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam. Methods The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns. Results Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns. Conclusions Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas." @default.
- W3015489690 created "2020-04-17" @default.
- W3015489690 creator A5003098901 @default.
- W3015489690 creator A5007007103 @default.
- W3015489690 creator A5011546643 @default.
- W3015489690 creator A5012815299 @default.
- W3015489690 creator A5013688884 @default.
- W3015489690 creator A5021433143 @default.
- W3015489690 creator A5021948904 @default.
- W3015489690 creator A5029379996 @default.
- W3015489690 creator A5041986910 @default.
- W3015489690 creator A5051408897 @default.
- W3015489690 creator A5056799272 @default.
- W3015489690 creator A5067163783 @default.
- W3015489690 creator A5073971331 @default.
- W3015489690 creator A5075351189 @default.
- W3015489690 date "2020-04-10" @default.
- W3015489690 modified "2023-10-10" @default.
- W3015489690 title "Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces" @default.
- W3015489690 cites W1928540589 @default.
- W3015489690 cites W1948311135 @default.
- W3015489690 cites W1969571661 @default.
- W3015489690 cites W1973603244 @default.
- W3015489690 cites W1977256372 @default.
- W3015489690 cites W1985750241 @default.
- W3015489690 cites W2001672704 @default.
- W3015489690 cites W2023481414 @default.
- W3015489690 cites W2036139039 @default.
- W3015489690 cites W2051261733 @default.
- W3015489690 cites W2068930226 @default.
- W3015489690 cites W2083747909 @default.
- W3015489690 cites W2094256441 @default.
- W3015489690 cites W2101839953 @default.
- W3015489690 cites W2103708706 @default.
- W3015489690 cites W2110423774 @default.
- W3015489690 cites W2121527356 @default.
- W3015489690 cites W2132093894 @default.
- W3015489690 cites W2141699230 @default.
- W3015489690 cites W2144207524 @default.
- W3015489690 cites W2158823754 @default.
- W3015489690 cites W2161311583 @default.
- W3015489690 cites W2162157155 @default.
- W3015489690 cites W2165835468 @default.
- W3015489690 cites W2166999834 @default.
- W3015489690 cites W2171102256 @default.
- W3015489690 cites W2229132304 @default.
- W3015489690 cites W2307970348 @default.
- W3015489690 cites W2337888447 @default.
- W3015489690 cites W2547042202 @default.
- W3015489690 cites W2589026216 @default.
- W3015489690 cites W2597603083 @default.
- W3015489690 cites W2601038053 @default.
- W3015489690 cites W2735068327 @default.
- W3015489690 cites W2763810423 @default.
- W3015489690 cites W2765398297 @default.
- W3015489690 cites W2782443422 @default.
- W3015489690 cites W2909223628 @default.
- W3015489690 cites W2921412579 @default.
- W3015489690 cites W2930283189 @default.
- W3015489690 cites W2943572202 @default.
- W3015489690 cites W2946821235 @default.
- W3015489690 cites W2949385499 @default.
- W3015489690 cites W2949839185 @default.
- W3015489690 cites W2951451623 @default.
- W3015489690 cites W2952678685 @default.
- W3015489690 cites W2953133001 @default.
- W3015489690 cites W2963947988 @default.
- W3015489690 cites W3003265586 @default.
- W3015489690 cites W385045614 @default.
- W3015489690 doi "https://doi.org/10.1186/s12942-020-00207-3" @default.
- W3015489690 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7149848" @default.
- W3015489690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32276636" @default.
- W3015489690 hasPublicationYear "2020" @default.
- W3015489690 type Work @default.
- W3015489690 sameAs 3015489690 @default.
- W3015489690 citedByCount "2" @default.
- W3015489690 countsByYear W30154896902021 @default.
- W3015489690 crossrefType "journal-article" @default.
- W3015489690 hasAuthorship W3015489690A5003098901 @default.
- W3015489690 hasAuthorship W3015489690A5007007103 @default.
- W3015489690 hasAuthorship W3015489690A5011546643 @default.
- W3015489690 hasAuthorship W3015489690A5012815299 @default.
- W3015489690 hasAuthorship W3015489690A5013688884 @default.
- W3015489690 hasAuthorship W3015489690A5021433143 @default.
- W3015489690 hasAuthorship W3015489690A5021948904 @default.
- W3015489690 hasAuthorship W3015489690A5029379996 @default.
- W3015489690 hasAuthorship W3015489690A5041986910 @default.
- W3015489690 hasAuthorship W3015489690A5051408897 @default.
- W3015489690 hasAuthorship W3015489690A5056799272 @default.
- W3015489690 hasAuthorship W3015489690A5067163783 @default.
- W3015489690 hasAuthorship W3015489690A5073971331 @default.
- W3015489690 hasAuthorship W3015489690A5075351189 @default.
- W3015489690 hasBestOaLocation W30154896901 @default.
- W3015489690 hasConcept C124101348 @default.
- W3015489690 hasConcept C13280743 @default.
- W3015489690 hasConcept C144024400 @default.
- W3015489690 hasConcept C149923435 @default.
- W3015489690 hasConcept C154945302 @default.
- W3015489690 hasConcept C159620131 @default.
- W3015489690 hasConcept C177212765 @default.