Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015501413> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3015501413 endingPage "4548" @default.
- W3015501413 startingPage "4535" @default.
- W3015501413 abstract "In this paper, we are interested in symbiotic radio networks (SRNs), in which an Internet-of-Things (IoT) network parasitizes in a primary cellular network to achieve spectrum-, energy-, and infrastructure-efficient communications. Each IoT device transmits its own information by backscattering the signals from the primary network without using active radio-frequency (RF) transmitter chain. We consider the symbiosis between the cellular network and the IoT network and focus on the user association problem in SRN. Specifically, the base station (BS) in the primary network serves multiple cellular users using time division multiple access (TDMA) and each IoT device is associated with one cellular user for information transmission. The objective of user association is to link each IoT device to an appropriate cellular user by maximizing the sum rate of all IoT devices. However, the difficulty in obtaining the full real-time channel information makes it difficult to design an optimal policy for this problem. To overcome this issue, we propose two deep reinforcement learning (DRL) algorithms, both use historical information to infer the current information in order to make appropriate decisions. One algorithm, referred to as centralized DRL, makes decisions for all IoT devices at one time with globally available information. The other algorithm, referred to as distributed DRL, makes a decision only for one IoT device at one time using locally available information. Finally, simulation results show that the two proposed DRL algorithms achieve performance comparable to the optimal user association policy which requires perfect real-time information, and the distributed DRL algorithm has the advantage of scalability." @default.
- W3015501413 created "2020-04-17" @default.
- W3015501413 creator A5006620409 @default.
- W3015501413 creator A5007832415 @default.
- W3015501413 creator A5079912695 @default.
- W3015501413 date "2020-07-01" @default.
- W3015501413 modified "2023-10-18" @default.
- W3015501413 title "Intelligent User Association for Symbiotic Radio Networks Using Deep Reinforcement Learning" @default.
- W3015501413 cites W1992251804 @default.
- W3015501413 cites W2054692642 @default.
- W3015501413 cites W2100471625 @default.
- W3015501413 cites W2107726111 @default.
- W3015501413 cites W2116575316 @default.
- W3015501413 cites W2145339207 @default.
- W3015501413 cites W2512920678 @default.
- W3015501413 cites W2566904036 @default.
- W3015501413 cites W2572855315 @default.
- W3015501413 cites W2596324967 @default.
- W3015501413 cites W2613120170 @default.
- W3015501413 cites W2787730280 @default.
- W3015501413 cites W2884145162 @default.
- W3015501413 cites W2888584885 @default.
- W3015501413 cites W2891171329 @default.
- W3015501413 cites W2891666821 @default.
- W3015501413 cites W2893939120 @default.
- W3015501413 cites W2897098321 @default.
- W3015501413 cites W2914462121 @default.
- W3015501413 cites W2914877864 @default.
- W3015501413 cites W2921454476 @default.
- W3015501413 cites W2956303517 @default.
- W3015501413 cites W2962732150 @default.
- W3015501413 cites W2963441626 @default.
- W3015501413 cites W2963907541 @default.
- W3015501413 cites W2964214207 @default.
- W3015501413 cites W2982628788 @default.
- W3015501413 cites W32403112 @default.
- W3015501413 cites W4242781462 @default.
- W3015501413 cites W4247702180 @default.
- W3015501413 cites W4256624651 @default.
- W3015501413 doi "https://doi.org/10.1109/twc.2020.2984758" @default.
- W3015501413 hasPublicationYear "2020" @default.
- W3015501413 type Work @default.
- W3015501413 sameAs 3015501413 @default.
- W3015501413 citedByCount "51" @default.
- W3015501413 countsByYear W30155014132019 @default.
- W3015501413 countsByYear W30155014132020 @default.
- W3015501413 countsByYear W30155014132021 @default.
- W3015501413 countsByYear W30155014132022 @default.
- W3015501413 countsByYear W30155014132023 @default.
- W3015501413 crossrefType "journal-article" @default.
- W3015501413 hasAuthorship W3015501413A5006620409 @default.
- W3015501413 hasAuthorship W3015501413A5007832415 @default.
- W3015501413 hasAuthorship W3015501413A5079912695 @default.
- W3015501413 hasBestOaLocation W30155014131 @default.
- W3015501413 hasConcept C117313154 @default.
- W3015501413 hasConcept C120314980 @default.
- W3015501413 hasConcept C153646914 @default.
- W3015501413 hasConcept C154945302 @default.
- W3015501413 hasConcept C31258907 @default.
- W3015501413 hasConcept C41008148 @default.
- W3015501413 hasConcept C68649174 @default.
- W3015501413 hasConcept C97541855 @default.
- W3015501413 hasConceptScore W3015501413C117313154 @default.
- W3015501413 hasConceptScore W3015501413C120314980 @default.
- W3015501413 hasConceptScore W3015501413C153646914 @default.
- W3015501413 hasConceptScore W3015501413C154945302 @default.
- W3015501413 hasConceptScore W3015501413C31258907 @default.
- W3015501413 hasConceptScore W3015501413C41008148 @default.
- W3015501413 hasConceptScore W3015501413C68649174 @default.
- W3015501413 hasConceptScore W3015501413C97541855 @default.
- W3015501413 hasFunder F4320306076 @default.
- W3015501413 hasFunder F4320321001 @default.
- W3015501413 hasFunder F4320327912 @default.
- W3015501413 hasFunder F4320335777 @default.
- W3015501413 hasIssue "7" @default.
- W3015501413 hasLocation W30155014131 @default.
- W3015501413 hasLocation W30155014132 @default.
- W3015501413 hasOpenAccess W3015501413 @default.
- W3015501413 hasPrimaryLocation W30155014131 @default.
- W3015501413 hasRelatedWork W2029216794 @default.
- W3015501413 hasRelatedWork W2047225036 @default.
- W3015501413 hasRelatedWork W2093207996 @default.
- W3015501413 hasRelatedWork W2133227934 @default.
- W3015501413 hasRelatedWork W2138314731 @default.
- W3015501413 hasRelatedWork W2142989636 @default.
- W3015501413 hasRelatedWork W2322468729 @default.
- W3015501413 hasRelatedWork W3033750547 @default.
- W3015501413 hasRelatedWork W4386698331 @default.
- W3015501413 hasRelatedWork W2168356777 @default.
- W3015501413 hasVolume "19" @default.
- W3015501413 isParatext "false" @default.
- W3015501413 isRetracted "false" @default.
- W3015501413 magId "3015501413" @default.
- W3015501413 workType "article" @default.