Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015508506> ?p ?o ?g. }
- W3015508506 endingPage "1145" @default.
- W3015508506 startingPage "1145" @default.
- W3015508506 abstract "Wind disturbances are significant phenomena in forest spatial structure and succession dynamics. They cause changes in biodiversity, impact on forest ecosystems at different spatial scales, and have a strong influence on economics and human beings. The reliable recognition and mapping of windthrow areas are of high importance from the perspective of forest management and nature conservation. Recent research in artificial intelligence and computer vision has demonstrated the incredible potential of neural networks in addressing image classification problems. The most efficient algorithms are based on artificial neural networks of nested and complex architecture (e.g., convolutional neural networks (CNNs)), which are usually referred to by a common term—deep learning. Deep learning provides powerful algorithms for the precise segmentation of remote sensing data. We developed an algorithm based on a U-Net-like CNN, which was trained to recognize windthrow areas in Kunashir Island, Russia. We used satellite imagery of very-high spatial resolution (0.5 m/pixel) as source data. We performed a grid search among 216 parameter combinations defining different U-Net-like architectures. The best parameter combination allowed us to achieve an overall accuracy for recognition of windthrow sites of up to 94% for forested landscapes by coniferous and mixed coniferous forests. We found that the false-positive decisions of our algorithm correspond to either seashore logs, which may look similar to fallen tree trunks, or leafless forest stands. While the former can be rectified by applying a forest mask, the latter requires the usage of additional information, which is not always provided by satellite imagery." @default.
- W3015508506 created "2020-04-17" @default.
- W3015508506 creator A5069986132 @default.
- W3015508506 creator A5077562449 @default.
- W3015508506 date "2020-04-03" @default.
- W3015508506 modified "2023-10-01" @default.
- W3015508506 title "Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning" @default.
- W3015508506 cites W1535736950 @default.
- W3015508506 cites W1981213426 @default.
- W3015508506 cites W1986560107 @default.
- W3015508506 cites W1988790447 @default.
- W3015508506 cites W2002297865 @default.
- W3015508506 cites W2016813153 @default.
- W3015508506 cites W2016832782 @default.
- W3015508506 cites W2018323521 @default.
- W3015508506 cites W2059937956 @default.
- W3015508506 cites W2076923985 @default.
- W3015508506 cites W2103529000 @default.
- W3015508506 cites W2111065693 @default.
- W3015508506 cites W2116873850 @default.
- W3015508506 cites W2127039226 @default.
- W3015508506 cites W2140948804 @default.
- W3015508506 cites W2150258239 @default.
- W3015508506 cites W2168577305 @default.
- W3015508506 cites W2171370728 @default.
- W3015508506 cites W2194775991 @default.
- W3015508506 cites W2236623899 @default.
- W3015508506 cites W2412782625 @default.
- W3015508506 cites W2561981131 @default.
- W3015508506 cites W2565950292 @default.
- W3015508506 cites W2568616777 @default.
- W3015508506 cites W2598836784 @default.
- W3015508506 cites W2618530766 @default.
- W3015508506 cites W2735602585 @default.
- W3015508506 cites W2749948847 @default.
- W3015508506 cites W2751608691 @default.
- W3015508506 cites W2774320778 @default.
- W3015508506 cites W2799703355 @default.
- W3015508506 cites W2811244448 @default.
- W3015508506 cites W2895907989 @default.
- W3015508506 cites W2897931795 @default.
- W3015508506 cites W2897987882 @default.
- W3015508506 cites W2901867974 @default.
- W3015508506 cites W2910942888 @default.
- W3015508506 cites W2912100887 @default.
- W3015508506 cites W2919115771 @default.
- W3015508506 cites W2921499963 @default.
- W3015508506 cites W2942231644 @default.
- W3015508506 cites W2944277284 @default.
- W3015508506 cites W2954932437 @default.
- W3015508506 cites W2954996726 @default.
- W3015508506 cites W2969634177 @default.
- W3015508506 cites W2978887557 @default.
- W3015508506 cites W2980008747 @default.
- W3015508506 cites W2982495255 @default.
- W3015508506 cites W2990265654 @default.
- W3015508506 cites W3003568080 @default.
- W3015508506 cites W3005101149 @default.
- W3015508506 cites W4239510810 @default.
- W3015508506 doi "https://doi.org/10.3390/rs12071145" @default.
- W3015508506 hasPublicationYear "2020" @default.
- W3015508506 type Work @default.
- W3015508506 sameAs 3015508506 @default.
- W3015508506 citedByCount "22" @default.
- W3015508506 countsByYear W30155085062020 @default.
- W3015508506 countsByYear W30155085062021 @default.
- W3015508506 countsByYear W30155085062022 @default.
- W3015508506 countsByYear W30155085062023 @default.
- W3015508506 crossrefType "journal-article" @default.
- W3015508506 hasAuthorship W3015508506A5069986132 @default.
- W3015508506 hasAuthorship W3015508506A5077562449 @default.
- W3015508506 hasBestOaLocation W30155085061 @default.
- W3015508506 hasConcept C119857082 @default.
- W3015508506 hasConcept C125072520 @default.
- W3015508506 hasConcept C13280743 @default.
- W3015508506 hasConcept C154945302 @default.
- W3015508506 hasConcept C187691185 @default.
- W3015508506 hasConcept C205649164 @default.
- W3015508506 hasConcept C2778102629 @default.
- W3015508506 hasConcept C41008148 @default.
- W3015508506 hasConcept C62649853 @default.
- W3015508506 hasConcept C81363708 @default.
- W3015508506 hasConcept C97137747 @default.
- W3015508506 hasConceptScore W3015508506C119857082 @default.
- W3015508506 hasConceptScore W3015508506C125072520 @default.
- W3015508506 hasConceptScore W3015508506C13280743 @default.
- W3015508506 hasConceptScore W3015508506C154945302 @default.
- W3015508506 hasConceptScore W3015508506C187691185 @default.
- W3015508506 hasConceptScore W3015508506C205649164 @default.
- W3015508506 hasConceptScore W3015508506C2778102629 @default.
- W3015508506 hasConceptScore W3015508506C41008148 @default.
- W3015508506 hasConceptScore W3015508506C62649853 @default.
- W3015508506 hasConceptScore W3015508506C81363708 @default.
- W3015508506 hasConceptScore W3015508506C97137747 @default.
- W3015508506 hasFunder F4320311239 @default.
- W3015508506 hasIssue "7" @default.
- W3015508506 hasLocation W30155085061 @default.
- W3015508506 hasOpenAccess W3015508506 @default.