Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015514997> ?p ?o ?g. }
- W3015514997 endingPage "5020" @default.
- W3015514997 startingPage "5003" @default.
- W3015514997 abstract "The accurate measurement of permeation is important at the product design stage for a variety of industries as diverse as conveyance methods for oil and gas produced fluids, such as mixtures of carbon dioxide, methane, hydrogen sulfide, water, and hydrocarbons, and in polymer-lined, unbonded flexible risers and flow lines through connectors and valves, hydrogen and methane gas carrying domestic lines, hydrogen storage tanks, sulfur hexafluoride circuit breakers for high power-carrying lines, oxygen through display technology, and drug delivery. It would also be appropriate to monitor the permeation rate through the polymer, composite, and elastomeric layers during the in-service times where applications allow. In the future, any alteration in the short term and long-term transport rates could be analyzed in terms of an initial alteration or degradation of the polymeric materials and, in some cases, metallic components. Crucially, such measurements would serve as an early warning system of any change in a polymeric material that could result in the loss of function of the fluid of a gas containing barrier material. Most experimental determinations are made through recording flux transients (varying flux) through permeation cells in which a polymer membrane or film separates a donor compartment (usually an infinite supply) and an acceptor compartment and in which membrane transport is considered to be slow. Treatment of the resulting experimental data is usually, but not always, undertaken through comparison with a steady-state model based on Fickian diffusion through the membrane, so as to extract the membrane permeability, the diffusion coefficient of the permeant, and the solubility of the permeant in the membrane phase. However, in spite of these measurements being undertaken routinely using closed cell manometric or continuous flow methods, there is a lack of literature in which experimental flux transients are provided, and in several cases, it is clear that the experimental data do not conform to the expected model of slow, Fickian diffusion through the membrane, even though experiments are performed at temperatures much higher than the glass transition temperature of the polymer membrane. In this paper, we first re-examine the classical model for an infinite source and extend it to account for (1) molecular interactions between membrane and permeant, using regular solution theory, (2) slow transport in the acceptor phase, and (3) slow kinetics across the membrane|acceptor interface. We demonstrate that all three aspects can cause permeation flux transients to exhibit unusual, nonclassical waveshapes, which have nevertheless been experimentally realized without rationalization. This enables the development of an algorithmic toolkit for the interpretation of permeation flux transients, so as to provide reliable and accurate data analysis for experimentalists." @default.
- W3015514997 created "2020-04-17" @default.
- W3015514997 creator A5005876190 @default.
- W3015514997 creator A5020488863 @default.
- W3015514997 creator A5023136543 @default.
- W3015514997 creator A5045642483 @default.
- W3015514997 date "2020-04-14" @default.
- W3015514997 modified "2023-09-24" @default.
- W3015514997 title "Regular Solution Theory for Polymer Permeation Transients: A Toolkit for Understanding Experimental Waveshapes" @default.
- W3015514997 cites W1537305388 @default.
- W3015514997 cites W1581392789 @default.
- W3015514997 cites W1605599607 @default.
- W3015514997 cites W1964019893 @default.
- W3015514997 cites W1964175854 @default.
- W3015514997 cites W1965538160 @default.
- W3015514997 cites W1965591232 @default.
- W3015514997 cites W1967747134 @default.
- W3015514997 cites W1973521397 @default.
- W3015514997 cites W1979595107 @default.
- W3015514997 cites W1979721147 @default.
- W3015514997 cites W1987761811 @default.
- W3015514997 cites W1989524325 @default.
- W3015514997 cites W1995948215 @default.
- W3015514997 cites W2004822647 @default.
- W3015514997 cites W2008373679 @default.
- W3015514997 cites W2009436265 @default.
- W3015514997 cites W2010162588 @default.
- W3015514997 cites W2011192066 @default.
- W3015514997 cites W2012161545 @default.
- W3015514997 cites W2022472470 @default.
- W3015514997 cites W2032416365 @default.
- W3015514997 cites W2034886048 @default.
- W3015514997 cites W2058328836 @default.
- W3015514997 cites W2065582066 @default.
- W3015514997 cites W2065964209 @default.
- W3015514997 cites W2068375049 @default.
- W3015514997 cites W2069027009 @default.
- W3015514997 cites W2072804520 @default.
- W3015514997 cites W2074011240 @default.
- W3015514997 cites W2079431001 @default.
- W3015514997 cites W2090438881 @default.
- W3015514997 cites W2097679483 @default.
- W3015514997 cites W2098506459 @default.
- W3015514997 cites W2102917770 @default.
- W3015514997 cites W2112949392 @default.
- W3015514997 cites W2116181654 @default.
- W3015514997 cites W2130549977 @default.
- W3015514997 cites W2136057251 @default.
- W3015514997 cites W2137948979 @default.
- W3015514997 cites W2154064438 @default.
- W3015514997 cites W2161012377 @default.
- W3015514997 cites W2169390375 @default.
- W3015514997 cites W2291614751 @default.
- W3015514997 cites W2317529438 @default.
- W3015514997 cites W2321786508 @default.
- W3015514997 cites W2329099755 @default.
- W3015514997 cites W2341729733 @default.
- W3015514997 cites W2505922248 @default.
- W3015514997 cites W2811366410 @default.
- W3015514997 cites W2900231415 @default.
- W3015514997 cites W2904038762 @default.
- W3015514997 cites W2944230341 @default.
- W3015514997 cites W2949373745 @default.
- W3015514997 cites W763149439 @default.
- W3015514997 doi "https://doi.org/10.1021/acs.langmuir.0c00589" @default.
- W3015514997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32286832" @default.
- W3015514997 hasPublicationYear "2020" @default.
- W3015514997 type Work @default.
- W3015514997 sameAs 3015514997 @default.
- W3015514997 citedByCount "3" @default.
- W3015514997 countsByYear W30155149972020 @default.
- W3015514997 countsByYear W30155149972021 @default.
- W3015514997 countsByYear W30155149972022 @default.
- W3015514997 crossrefType "journal-article" @default.
- W3015514997 hasAuthorship W3015514997A5005876190 @default.
- W3015514997 hasAuthorship W3015514997A5020488863 @default.
- W3015514997 hasAuthorship W3015514997A5023136543 @default.
- W3015514997 hasAuthorship W3015514997A5045642483 @default.
- W3015514997 hasBestOaLocation W30155149972 @default.
- W3015514997 hasConcept C121332964 @default.
- W3015514997 hasConcept C127413603 @default.
- W3015514997 hasConcept C159985019 @default.
- W3015514997 hasConcept C178790620 @default.
- W3015514997 hasConcept C185592680 @default.
- W3015514997 hasConcept C192562407 @default.
- W3015514997 hasConcept C41625074 @default.
- W3015514997 hasConcept C42360764 @default.
- W3015514997 hasConcept C50670333 @default.
- W3015514997 hasConcept C512968161 @default.
- W3015514997 hasConcept C516920438 @default.
- W3015514997 hasConcept C521977710 @default.
- W3015514997 hasConcept C55493867 @default.
- W3015514997 hasConcept C69357855 @default.
- W3015514997 hasConcept C97355855 @default.
- W3015514997 hasConceptScore W3015514997C121332964 @default.
- W3015514997 hasConceptScore W3015514997C127413603 @default.
- W3015514997 hasConceptScore W3015514997C159985019 @default.
- W3015514997 hasConceptScore W3015514997C178790620 @default.