Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015556054> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3015556054 abstract "Biometrics recognition system are getting more attention in efforts to protect our security and information in this world of digital impersonation. Palm vein recognition are well-known in biometrics recognition where it shows a high level of authentication. However, there is still an unsolved issued in accuracy due to the complexity and uniqueness of palm vein pattern. Low quality image provides unclear and low contrast image affecting the process although palm vein feature extraction is perfect. There were studies to investigate the possibility that fusion methods would improve or enhance the accuracy to a higher level. Image fusion is a method to collect necessary information from all input image with different sources and create an output image that ideally has information from input image. Fused image can provide more information than single input image that improve quality and applicability of data. In this work, image fusion algorithms based on Discrete Cosine Transform (DCT) in palm vein recognition is proposed. Input image will be divided into consecutive blocks and transformed into DCT coefficients. Fusion rule will be applied within the DCT coefficients and transformed back into fused image using inverse DCT. In this work, CASIA database is used to provide three types of wavelength spectrum which are 700 nm, 850 nm, and 940nm. There are four combination of image fusion that can be formed, dual combination with 700 nm and 850nm, 700 nm and 940 nm, 850 nm and 940 nm and triple combination of all wavelength. Multi-resolution DCT (MRDCT), Frequency Partition DCT (FPDCT) and Laplacian Pyramid DCT (LPDCT) image fusion is introduced on fusing more informative information from different types of wavelength and resulting in an image with finer details of vein patterns in the output image. In this work, triple combination of image fusion achieve better than dual combination of image fusion. By fusing three wavelength spectrums, MRDCT performed the best at 5.53% in EER rate compared to FPDCT and LPDCT. The conventional method such as Multi-resolution Singular Value Decomposition (MSVD), wavelet transform and Energy of Laplacian (EOL), were only able to achieve EER rate of 6.58%, 6.83% and 8.64% respectively. In addition to that, MRDCT with triple wavelength spectrum fusion showed a significant drop in EER by 9% compared with single 700 nm image, 7% compared with single 850 nm image, and 6% compared with single 940 nm image. It proved that MRDCT image fusion is suitable for palm vein recognition. For feature extraction, two types of local invariant feature based method was investigated, Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF). SIFT algorithm achieved a reduction in EER rate by 12% in 700 nm, 8% in 850 nm, 7% in 940 nm compared with the SURF algorithm. The result shows that SIFT algorithm achieved a better recognition rate and extract more information and matching pairs compared to SURF algorithm. In conclusion, MRDCT image fusion with SIFT feature extraction are suitable to use in contactless palm vein recognition system." @default.
- W3015556054 created "2020-04-17" @default.
- W3015556054 creator A5072819682 @default.
- W3015556054 date "2018-12-01" @default.
- W3015556054 modified "2023-09-26" @default.
- W3015556054 title "Multispectral palm vein image fusion for contactless palm vein verification system" @default.
- W3015556054 cites W1598780852 @default.
- W3015556054 cites W170507967 @default.
- W3015556054 cites W19563503 @default.
- W3015556054 cites W1974672153 @default.
- W3015556054 cites W2002207281 @default.
- W3015556054 cites W2005254625 @default.
- W3015556054 cites W2005482491 @default.
- W3015556054 cites W2012178979 @default.
- W3015556054 cites W2034190994 @default.
- W3015556054 cites W2038568209 @default.
- W3015556054 cites W2038702428 @default.
- W3015556054 cites W2047243114 @default.
- W3015556054 cites W2049306082 @default.
- W3015556054 cites W2063731971 @default.
- W3015556054 cites W2070204942 @default.
- W3015556054 cites W2078118580 @default.
- W3015556054 cites W2094102746 @default.
- W3015556054 cites W2102780391 @default.
- W3015556054 cites W2102796633 @default.
- W3015556054 cites W2114214092 @default.
- W3015556054 cites W2115755118 @default.
- W3015556054 cites W2130283969 @default.
- W3015556054 cites W2131801630 @default.
- W3015556054 cites W2143696753 @default.
- W3015556054 cites W2151103935 @default.
- W3015556054 cites W2153716317 @default.
- W3015556054 cites W2187685883 @default.
- W3015556054 cites W2289866530 @default.
- W3015556054 cites W2521804509 @default.
- W3015556054 cites W2567481980 @default.
- W3015556054 cites W2751858599 @default.
- W3015556054 cites W2758913579 @default.
- W3015556054 cites W2769019355 @default.
- W3015556054 cites W2783543995 @default.
- W3015556054 cites W2788516653 @default.
- W3015556054 cites W2793410607 @default.
- W3015556054 cites W2807849355 @default.
- W3015556054 cites W2808236543 @default.
- W3015556054 hasPublicationYear "2018" @default.
- W3015556054 type Work @default.
- W3015556054 sameAs 3015556054 @default.
- W3015556054 citedByCount "0" @default.
- W3015556054 crossrefType "dissertation" @default.
- W3015556054 hasAuthorship W3015556054A5072819682 @default.
- W3015556054 hasConcept C115961682 @default.
- W3015556054 hasConcept C153180895 @default.
- W3015556054 hasConcept C154945302 @default.
- W3015556054 hasConcept C173163844 @default.
- W3015556054 hasConcept C184297639 @default.
- W3015556054 hasConcept C2221639 @default.
- W3015556054 hasConcept C2777503689 @default.
- W3015556054 hasConcept C31972630 @default.
- W3015556054 hasConcept C41008148 @default.
- W3015556054 hasConcept C55020928 @default.
- W3015556054 hasConcept C69744172 @default.
- W3015556054 hasConceptScore W3015556054C115961682 @default.
- W3015556054 hasConceptScore W3015556054C153180895 @default.
- W3015556054 hasConceptScore W3015556054C154945302 @default.
- W3015556054 hasConceptScore W3015556054C173163844 @default.
- W3015556054 hasConceptScore W3015556054C184297639 @default.
- W3015556054 hasConceptScore W3015556054C2221639 @default.
- W3015556054 hasConceptScore W3015556054C2777503689 @default.
- W3015556054 hasConceptScore W3015556054C31972630 @default.
- W3015556054 hasConceptScore W3015556054C41008148 @default.
- W3015556054 hasConceptScore W3015556054C55020928 @default.
- W3015556054 hasConceptScore W3015556054C69744172 @default.
- W3015556054 hasLocation W30155560541 @default.
- W3015556054 hasOpenAccess W3015556054 @default.
- W3015556054 hasPrimaryLocation W30155560541 @default.
- W3015556054 hasRelatedWork W1596141692 @default.
- W3015556054 hasRelatedWork W2000100290 @default.
- W3015556054 hasRelatedWork W2011150877 @default.
- W3015556054 hasRelatedWork W2110290372 @default.
- W3015556054 hasRelatedWork W2186436455 @default.
- W3015556054 hasRelatedWork W2315005514 @default.
- W3015556054 hasRelatedWork W2321650571 @default.
- W3015556054 hasRelatedWork W2352621028 @default.
- W3015556054 hasRelatedWork W2357430536 @default.
- W3015556054 hasRelatedWork W2361727542 @default.
- W3015556054 hasRelatedWork W2374218747 @default.
- W3015556054 hasRelatedWork W2383199257 @default.
- W3015556054 hasRelatedWork W2384404708 @default.
- W3015556054 hasRelatedWork W2766326670 @default.
- W3015556054 hasRelatedWork W2809220777 @default.
- W3015556054 hasRelatedWork W2964225252 @default.
- W3015556054 hasRelatedWork W3017277088 @default.
- W3015556054 hasRelatedWork W3176159059 @default.
- W3015556054 hasRelatedWork W3209587088 @default.
- W3015556054 hasRelatedWork W2561379154 @default.
- W3015556054 isParatext "false" @default.
- W3015556054 isRetracted "false" @default.
- W3015556054 magId "3015556054" @default.
- W3015556054 workType "dissertation" @default.