Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015565410> ?p ?o ?g. }
- W3015565410 abstract "In this study, we propose a hybrid approach involving feature extraction, feature selection, and optimized learning for the diagnosis of multiple sclerosis (MS), which can detect the lesion caused by MS plaques in the brain using magnetic resonance imaging analysis. A major challenge associated with lesion diagnosis by neurologists is that it is a time-consuming process and demands high expertise; therefore, researchers have been stimulated to find an auto-diagnose method of the disease. Given the high resemblance of MS plaque-induced lesions and other lesions such as Alzheimer’s or dementia, scant research has explored the diagnosis of MS-induced lesions, most of which suffering from the lack of an efficient and accurate method. Informed by the need for a precise hybrid model for the classification of MS plaques and other comparable lesions, a solution is proposed that utilizes an efficient model. In this method, after image preprocessing, the feature vector is created by applying fractal and Pseudo-Zernike Moments descriptors. Feature selection using the Difference Evolution) algorithm to select the minimum subset of features will reduce the number of Extreme Learning Machine (ELM) inputs for classification. To improve the classification effect, the ELM wavelet kernel parameters are also regulated by the Shuffled Frog-Leaping Algorithm. By applying the proposed model to a set of brain MR images obtained from healthy subjects and MS patients during different experimental iterations, an average accuracy of 97% was obtained. The results of the method were estimated under specific conditions, and finally the proposed model yielded desirable outputs compared to similar methods." @default.
- W3015565410 created "2020-04-17" @default.
- W3015565410 creator A5038465361 @default.
- W3015565410 creator A5043541546 @default.
- W3015565410 creator A5074745984 @default.
- W3015565410 creator A5086600590 @default.
- W3015565410 date "2020-04-09" @default.
- W3015565410 modified "2023-10-17" @default.
- W3015565410 title "Supervised meta-heuristic extreme learning machine for multiple sclerosis detection based on multiple feature descriptors in MR images" @default.
- W3015565410 cites W1093064829 @default.
- W3015565410 cites W1526906669 @default.
- W3015565410 cites W1790909941 @default.
- W3015565410 cites W1943838624 @default.
- W3015565410 cites W1971924430 @default.
- W3015565410 cites W1975858517 @default.
- W3015565410 cites W2000308637 @default.
- W3015565410 cites W2022237253 @default.
- W3015565410 cites W2025760412 @default.
- W3015565410 cites W2026607811 @default.
- W3015565410 cites W2044866127 @default.
- W3015565410 cites W2046600620 @default.
- W3015565410 cites W2055521804 @default.
- W3015565410 cites W2056721442 @default.
- W3015565410 cites W2075312775 @default.
- W3015565410 cites W2102848905 @default.
- W3015565410 cites W2119923199 @default.
- W3015565410 cites W2121900453 @default.
- W3015565410 cites W2155727453 @default.
- W3015565410 cites W2331803192 @default.
- W3015565410 cites W2342591535 @default.
- W3015565410 cites W2509876630 @default.
- W3015565410 cites W2545839033 @default.
- W3015565410 cites W2589409328 @default.
- W3015565410 cites W2608051431 @default.
- W3015565410 cites W2621365959 @default.
- W3015565410 cites W2715432037 @default.
- W3015565410 cites W2734778705 @default.
- W3015565410 cites W2762747243 @default.
- W3015565410 cites W2782058489 @default.
- W3015565410 cites W2782590512 @default.
- W3015565410 cites W2791927256 @default.
- W3015565410 cites W2886706965 @default.
- W3015565410 cites W2901262261 @default.
- W3015565410 cites W2914201809 @default.
- W3015565410 cites W2922179268 @default.
- W3015565410 cites W2945707565 @default.
- W3015565410 cites W3001462809 @default.
- W3015565410 cites W375705258 @default.
- W3015565410 cites W4247118366 @default.
- W3015565410 cites W611000878 @default.
- W3015565410 cites W981802586 @default.
- W3015565410 doi "https://doi.org/10.1007/s42452-020-2699-y" @default.
- W3015565410 hasPublicationYear "2020" @default.
- W3015565410 type Work @default.
- W3015565410 sameAs 3015565410 @default.
- W3015565410 citedByCount "12" @default.
- W3015565410 countsByYear W30155654102020 @default.
- W3015565410 countsByYear W30155654102021 @default.
- W3015565410 countsByYear W30155654102022 @default.
- W3015565410 countsByYear W30155654102023 @default.
- W3015565410 crossrefType "journal-article" @default.
- W3015565410 hasAuthorship W3015565410A5038465361 @default.
- W3015565410 hasAuthorship W3015565410A5043541546 @default.
- W3015565410 hasAuthorship W3015565410A5074745984 @default.
- W3015565410 hasAuthorship W3015565410A5086600590 @default.
- W3015565410 hasBestOaLocation W30155654101 @default.
- W3015565410 hasConcept C114614502 @default.
- W3015565410 hasConcept C12267149 @default.
- W3015565410 hasConcept C138885662 @default.
- W3015565410 hasConcept C148483581 @default.
- W3015565410 hasConcept C153180895 @default.
- W3015565410 hasConcept C154945302 @default.
- W3015565410 hasConcept C2776401178 @default.
- W3015565410 hasConcept C2780150128 @default.
- W3015565410 hasConcept C33923547 @default.
- W3015565410 hasConcept C34736171 @default.
- W3015565410 hasConcept C41008148 @default.
- W3015565410 hasConcept C41895202 @default.
- W3015565410 hasConcept C50644808 @default.
- W3015565410 hasConcept C52622490 @default.
- W3015565410 hasConcept C74193536 @default.
- W3015565410 hasConceptScore W3015565410C114614502 @default.
- W3015565410 hasConceptScore W3015565410C12267149 @default.
- W3015565410 hasConceptScore W3015565410C138885662 @default.
- W3015565410 hasConceptScore W3015565410C148483581 @default.
- W3015565410 hasConceptScore W3015565410C153180895 @default.
- W3015565410 hasConceptScore W3015565410C154945302 @default.
- W3015565410 hasConceptScore W3015565410C2776401178 @default.
- W3015565410 hasConceptScore W3015565410C2780150128 @default.
- W3015565410 hasConceptScore W3015565410C33923547 @default.
- W3015565410 hasConceptScore W3015565410C34736171 @default.
- W3015565410 hasConceptScore W3015565410C41008148 @default.
- W3015565410 hasConceptScore W3015565410C41895202 @default.
- W3015565410 hasConceptScore W3015565410C50644808 @default.
- W3015565410 hasConceptScore W3015565410C52622490 @default.
- W3015565410 hasConceptScore W3015565410C74193536 @default.
- W3015565410 hasIssue "5" @default.
- W3015565410 hasLocation W30155654101 @default.
- W3015565410 hasOpenAccess W3015565410 @default.
- W3015565410 hasPrimaryLocation W30155654101 @default.