Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015676876> ?p ?o ?g. }
- W3015676876 endingPage "1879" @default.
- W3015676876 startingPage "1879" @default.
- W3015676876 abstract "The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods." @default.
- W3015676876 created "2020-04-17" @default.
- W3015676876 creator A5000447281 @default.
- W3015676876 creator A5056689178 @default.
- W3015676876 creator A5082021143 @default.
- W3015676876 date "2020-04-12" @default.
- W3015676876 modified "2023-10-16" @default.
- W3015676876 title "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm" @default.
- W3015676876 cites W1550724789 @default.
- W3015676876 cites W1998220081 @default.
- W3015676876 cites W2021358089 @default.
- W3015676876 cites W2021540113 @default.
- W3015676876 cites W2028782916 @default.
- W3015676876 cites W2040970088 @default.
- W3015676876 cites W2070826863 @default.
- W3015676876 cites W2074088705 @default.
- W3015676876 cites W2074911163 @default.
- W3015676876 cites W2103212315 @default.
- W3015676876 cites W2194112954 @default.
- W3015676876 cites W2296521892 @default.
- W3015676876 cites W2469734051 @default.
- W3015676876 cites W2470699557 @default.
- W3015676876 cites W2598525681 @default.
- W3015676876 cites W2604099671 @default.
- W3015676876 cites W2738900493 @default.
- W3015676876 cites W2750306247 @default.
- W3015676876 cites W2763128055 @default.
- W3015676876 cites W2773629498 @default.
- W3015676876 cites W2793954778 @default.
- W3015676876 cites W2802184575 @default.
- W3015676876 cites W2805159135 @default.
- W3015676876 cites W2812669263 @default.
- W3015676876 cites W2888449021 @default.
- W3015676876 cites W2890554903 @default.
- W3015676876 cites W2890944268 @default.
- W3015676876 cites W2891264894 @default.
- W3015676876 cites W2898631190 @default.
- W3015676876 cites W2899529671 @default.
- W3015676876 cites W2903265999 @default.
- W3015676876 cites W2904566383 @default.
- W3015676876 cites W2906333996 @default.
- W3015676876 cites W2919358988 @default.
- W3015676876 cites W2919841204 @default.
- W3015676876 cites W2920927670 @default.
- W3015676876 cites W2941419477 @default.
- W3015676876 cites W2950072808 @default.
- W3015676876 cites W2954123905 @default.
- W3015676876 cites W2956074973 @default.
- W3015676876 cites W2965609171 @default.
- W3015676876 cites W2966153025 @default.
- W3015676876 cites W2982252459 @default.
- W3015676876 cites W2990838834 @default.
- W3015676876 cites W2996313295 @default.
- W3015676876 cites W3005489965 @default.
- W3015676876 cites W4236591756 @default.
- W3015676876 cites W4239510810 @default.
- W3015676876 doi "https://doi.org/10.3390/en13081879" @default.
- W3015676876 hasPublicationYear "2020" @default.
- W3015676876 type Work @default.
- W3015676876 sameAs 3015676876 @default.
- W3015676876 citedByCount "40" @default.
- W3015676876 countsByYear W30156768762020 @default.
- W3015676876 countsByYear W30156768762021 @default.
- W3015676876 countsByYear W30156768762022 @default.
- W3015676876 countsByYear W30156768762023 @default.
- W3015676876 crossrefType "journal-article" @default.
- W3015676876 hasAuthorship W3015676876A5000447281 @default.
- W3015676876 hasAuthorship W3015676876A5056689178 @default.
- W3015676876 hasAuthorship W3015676876A5082021143 @default.
- W3015676876 hasBestOaLocation W30156768761 @default.
- W3015676876 hasConcept C11413529 @default.
- W3015676876 hasConcept C119599485 @default.
- W3015676876 hasConcept C119857082 @default.
- W3015676876 hasConcept C121332964 @default.
- W3015676876 hasConcept C12267149 @default.
- W3015676876 hasConcept C127413603 @default.
- W3015676876 hasConcept C154945302 @default.
- W3015676876 hasConcept C163258240 @default.
- W3015676876 hasConcept C188573790 @default.
- W3015676876 hasConcept C41008148 @default.
- W3015676876 hasConcept C41291067 @default.
- W3015676876 hasConcept C50644808 @default.
- W3015676876 hasConcept C61797465 @default.
- W3015676876 hasConcept C62520636 @default.
- W3015676876 hasConcept C81363708 @default.
- W3015676876 hasConcept C85617194 @default.
- W3015676876 hasConcept C89227174 @default.
- W3015676876 hasConceptScore W3015676876C11413529 @default.
- W3015676876 hasConceptScore W3015676876C119599485 @default.
- W3015676876 hasConceptScore W3015676876C119857082 @default.
- W3015676876 hasConceptScore W3015676876C121332964 @default.
- W3015676876 hasConceptScore W3015676876C12267149 @default.
- W3015676876 hasConceptScore W3015676876C127413603 @default.
- W3015676876 hasConceptScore W3015676876C154945302 @default.
- W3015676876 hasConceptScore W3015676876C163258240 @default.
- W3015676876 hasConceptScore W3015676876C188573790 @default.
- W3015676876 hasConceptScore W3015676876C41008148 @default.
- W3015676876 hasConceptScore W3015676876C41291067 @default.