Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015682012> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3015682012 endingPage "e16896" @default.
- W3015682012 startingPage "e16896" @default.
- W3015682012 abstract "Background Patient follow-up is an essential part of hospital ward management. With the development of deep learning algorithms, individual follow-up assignments might be completed by artificial intelligence (AI). We developed an AI-assisted follow-up conversational agent that can simulate the human voice and select an appropriate follow-up time for quantitative, automatic, and personalized patient follow-up. Patient feedback and voice information could be collected and converted into text data automatically. Objective The primary objective of this study was to compare the cost-effectiveness of AI-assisted follow-up to manual follow-up of patients after surgery. The secondary objective was to compare the feedback from AI-assisted follow-up to feedback from manual follow-up. Methods The AI-assisted follow-up system was adopted in the Orthopedic Department of Peking Union Medical College Hospital in April 2019. A total of 270 patients were followed up through this system. Prior to that, 2656 patients were followed up by phone calls manually. Patient characteristics, telephone connection rate, follow-up rate, feedback collection rate, time spent, and feedback composition were compared between the two groups of patients. Results There was no statistically significant difference in age, gender, or disease between the two groups. There was no significant difference in telephone connection rate (manual: 2478/2656, 93.3%; AI-assisted: 249/270, 92.2%; P=.50) or successful follow-up rate (manual: 2301/2478, 92.9%; AI-assisted: 231/249, 92.8%; P=.96) between the two groups. The time spent on 100 patients in the manual follow-up group was about 9.3 hours. In contrast, the time spent on the AI-assisted follow-up was close to 0 hours. The feedback rate in the AI-assisted follow-up group was higher than that in the manual follow-up group (manual: 68/2656, 2.5%; AI-assisted: 28/270, 10.3%; P<.001). The composition of feedback was different in the two groups. Feedback from the AI-assisted follow-up group mainly included nursing, health education, and hospital environment content, while feedback from the manual follow-up group mostly included medical consultation content. Conclusions The effectiveness of AI-assisted follow-up was not inferior to that of manual follow-up. Human resource costs are saved by AI. AI can help obtain comprehensive feedback from patients, although its depth and pertinence of communication need to be improved." @default.
- W3015682012 created "2020-04-17" @default.
- W3015682012 creator A5005197489 @default.
- W3015682012 creator A5027341780 @default.
- W3015682012 creator A5031426386 @default.
- W3015682012 creator A5078614706 @default.
- W3015682012 date "2020-05-26" @default.
- W3015682012 modified "2023-10-14" @default.
- W3015682012 title "Artificial Intelligence–Assisted System in Postoperative Follow-up of Orthopedic Patients: Exploratory Quantitative and Qualitative Study" @default.
- W3015682012 cites W1574170424 @default.
- W3015682012 cites W2008442401 @default.
- W3015682012 cites W2014502406 @default.
- W3015682012 cites W2020767095 @default.
- W3015682012 cites W2029819421 @default.
- W3015682012 cites W2120715704 @default.
- W3015682012 cites W2183062279 @default.
- W3015682012 cites W2765235105 @default.
- W3015682012 cites W2780634211 @default.
- W3015682012 cites W2794351024 @default.
- W3015682012 cites W2810071873 @default.
- W3015682012 cites W2878119621 @default.
- W3015682012 cites W2903014548 @default.
- W3015682012 cites W2922467193 @default.
- W3015682012 cites W2940962285 @default.
- W3015682012 cites W2946665012 @default.
- W3015682012 cites W2954860820 @default.
- W3015682012 doi "https://doi.org/10.2196/16896" @default.
- W3015682012 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7284488" @default.
- W3015682012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32452807" @default.
- W3015682012 hasPublicationYear "2020" @default.
- W3015682012 type Work @default.
- W3015682012 sameAs 3015682012 @default.
- W3015682012 citedByCount "24" @default.
- W3015682012 countsByYear W30156820122021 @default.
- W3015682012 countsByYear W30156820122022 @default.
- W3015682012 countsByYear W30156820122023 @default.
- W3015682012 crossrefType "journal-article" @default.
- W3015682012 hasAuthorship W3015682012A5005197489 @default.
- W3015682012 hasAuthorship W3015682012A5027341780 @default.
- W3015682012 hasAuthorship W3015682012A5031426386 @default.
- W3015682012 hasAuthorship W3015682012A5078614706 @default.
- W3015682012 hasBestOaLocation W30156820121 @default.
- W3015682012 hasConcept C141071460 @default.
- W3015682012 hasConcept C195910791 @default.
- W3015682012 hasConcept C68312169 @default.
- W3015682012 hasConcept C71924100 @default.
- W3015682012 hasConceptScore W3015682012C141071460 @default.
- W3015682012 hasConceptScore W3015682012C195910791 @default.
- W3015682012 hasConceptScore W3015682012C68312169 @default.
- W3015682012 hasConceptScore W3015682012C71924100 @default.
- W3015682012 hasIssue "5" @default.
- W3015682012 hasLocation W30156820121 @default.
- W3015682012 hasLocation W30156820122 @default.
- W3015682012 hasLocation W30156820123 @default.
- W3015682012 hasLocation W30156820124 @default.
- W3015682012 hasOpenAccess W3015682012 @default.
- W3015682012 hasPrimaryLocation W30156820121 @default.
- W3015682012 hasRelatedWork W1987780623 @default.
- W3015682012 hasRelatedWork W2031637623 @default.
- W3015682012 hasRelatedWork W2089006872 @default.
- W3015682012 hasRelatedWork W2143598137 @default.
- W3015682012 hasRelatedWork W214433981 @default.
- W3015682012 hasRelatedWork W2323121255 @default.
- W3015682012 hasRelatedWork W2329019121 @default.
- W3015682012 hasRelatedWork W2463636345 @default.
- W3015682012 hasRelatedWork W3139591674 @default.
- W3015682012 hasRelatedWork W4206422284 @default.
- W3015682012 hasVolume "22" @default.
- W3015682012 isParatext "false" @default.
- W3015682012 isRetracted "false" @default.
- W3015682012 magId "3015682012" @default.
- W3015682012 workType "article" @default.