Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015714752> ?p ?o ?g. }
- W3015714752 endingPage "455" @default.
- W3015714752 startingPage "437" @default.
- W3015714752 abstract "Image decomposition and sparse representation (SR) based methods have achieved enormous successes in multi-source image fusion. However, there exists the performance degradation caused by the following two aspects: (i) limitation of image descriptions for decomposition based methods; (ii) limited ability in detail preservation resulted by divided overlap patches for SR based methods. In order to address such deficiencies, a novel method based on Taylor expansion and convolutional sparse representation (TE-CSR) is proposed for image fusion. Firstly, the Taylor expansion theory, to the best of our knowledge, is for the first time introduced to decompose each source image into many intrinsic components including one deviation component and several energy components. Secondly, the convolutional sparse representation with gradient penalties (CSRGP) model is built to fuse these deviation components, and the average rule is employed for combining the energy components. Finally, we utilize the inverse Taylor expansion to reconstruct the fused image. This proposed method is to suppress the gap of image descriptions in existing decomposition based algorithms. In addition, the new method can improve the limited ability to preserve details caused by the sparse patch coding with SR based approaches. Extensive experimental results are provided to demonstrate the effectiveness of the TE-CSR method." @default.
- W3015714752 created "2020-04-17" @default.
- W3015714752 creator A5005548775 @default.
- W3015714752 creator A5028055759 @default.
- W3015714752 creator A5030032863 @default.
- W3015714752 creator A5061137450 @default.
- W3015714752 creator A5077293908 @default.
- W3015714752 date "2020-08-01" @default.
- W3015714752 modified "2023-10-14" @default.
- W3015714752 title "Using Taylor Expansion and Convolutional Sparse Representation for Image Fusion" @default.
- W3015714752 cites W1963915657 @default.
- W3015714752 cites W1963932289 @default.
- W3015714752 cites W1974774078 @default.
- W3015714752 cites W1976709621 @default.
- W3015714752 cites W1978333359 @default.
- W3015714752 cites W2018332268 @default.
- W3015714752 cites W2020442368 @default.
- W3015714752 cites W2025133197 @default.
- W3015714752 cites W2026651590 @default.
- W3015714752 cites W2038535372 @default.
- W3015714752 cites W2038596520 @default.
- W3015714752 cites W2048661006 @default.
- W3015714752 cites W2082232962 @default.
- W3015714752 cites W2103504761 @default.
- W3015714752 cites W2108283046 @default.
- W3015714752 cites W2114207195 @default.
- W3015714752 cites W2116702374 @default.
- W3015714752 cites W2129812935 @default.
- W3015714752 cites W2131168375 @default.
- W3015714752 cites W2133135191 @default.
- W3015714752 cites W2133665775 @default.
- W3015714752 cites W2146353910 @default.
- W3015714752 cites W2158842967 @default.
- W3015714752 cites W2159269332 @default.
- W3015714752 cites W2168783614 @default.
- W3015714752 cites W2170163526 @default.
- W3015714752 cites W2179019672 @default.
- W3015714752 cites W2190662802 @default.
- W3015714752 cites W2306859282 @default.
- W3015714752 cites W2413684032 @default.
- W3015714752 cites W2476975422 @default.
- W3015714752 cites W2489975106 @default.
- W3015714752 cites W2532801510 @default.
- W3015714752 cites W2586218630 @default.
- W3015714752 cites W2624240493 @default.
- W3015714752 cites W2750085043 @default.
- W3015714752 cites W2772926238 @default.
- W3015714752 cites W2781902417 @default.
- W3015714752 cites W2782405382 @default.
- W3015714752 cites W2794686168 @default.
- W3015714752 cites W2794692403 @default.
- W3015714752 cites W2794731943 @default.
- W3015714752 cites W2803795982 @default.
- W3015714752 cites W2808591023 @default.
- W3015714752 cites W2809795042 @default.
- W3015714752 cites W2885274367 @default.
- W3015714752 cites W2889744658 @default.
- W3015714752 cites W2891029880 @default.
- W3015714752 cites W2891417129 @default.
- W3015714752 cites W2901693161 @default.
- W3015714752 cites W2912126472 @default.
- W3015714752 cites W2941380944 @default.
- W3015714752 cites W2961970125 @default.
- W3015714752 cites W2963134949 @default.
- W3015714752 cites W2963787388 @default.
- W3015714752 cites W3105639468 @default.
- W3015714752 cites W4244393449 @default.
- W3015714752 cites W4292363360 @default.
- W3015714752 doi "https://doi.org/10.1016/j.neucom.2020.04.002" @default.
- W3015714752 hasPublicationYear "2020" @default.
- W3015714752 type Work @default.
- W3015714752 sameAs 3015714752 @default.
- W3015714752 citedByCount "37" @default.
- W3015714752 countsByYear W30157147522020 @default.
- W3015714752 countsByYear W30157147522021 @default.
- W3015714752 countsByYear W30157147522022 @default.
- W3015714752 countsByYear W30157147522023 @default.
- W3015714752 crossrefType "journal-article" @default.
- W3015714752 hasAuthorship W3015714752A5005548775 @default.
- W3015714752 hasAuthorship W3015714752A5028055759 @default.
- W3015714752 hasAuthorship W3015714752A5030032863 @default.
- W3015714752 hasAuthorship W3015714752A5061137450 @default.
- W3015714752 hasAuthorship W3015714752A5077293908 @default.
- W3015714752 hasConcept C11413529 @default.
- W3015714752 hasConcept C115961682 @default.
- W3015714752 hasConcept C119599485 @default.
- W3015714752 hasConcept C124066611 @default.
- W3015714752 hasConcept C127413603 @default.
- W3015714752 hasConcept C134306372 @default.
- W3015714752 hasConcept C141353440 @default.
- W3015714752 hasConcept C153180895 @default.
- W3015714752 hasConcept C154945302 @default.
- W3015714752 hasConcept C158946198 @default.
- W3015714752 hasConcept C17744445 @default.
- W3015714752 hasConcept C199539241 @default.
- W3015714752 hasConcept C207467116 @default.
- W3015714752 hasConcept C2524010 @default.
- W3015714752 hasConcept C2776359362 @default.