Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015766988> ?p ?o ?g. }
- W3015766988 endingPage "113026" @default.
- W3015766988 startingPage "113026" @default.
- W3015766988 abstract "This paper provides a Bayesian framework for determining the spatial variability of the apparent material properties of two-phase composites. Bayesian analysis is applied to learn the parameters of the random fields that characterize the mesoscale material properties using computer-simulated images of the material microstructure. The information from such images is used to define the likelihood function of the random field parameters given the homogenized microscale data. The uncertainty in the parameter estimates is quantified through determining their full posterior distribution instead of a point estimate by application of an adaptive sampling algorithm. In addition, the Bayesian approach allows for assessing the plausibility of different correlation models belonging to the Matérn class through computing their respective marginal likelihoods for various choices of the smoothness parameter. The framework is applied to a composite material with large inclusion/matrix stiffness ratio and useful conclusions are derived with regard to the most appropriate correlation model and its parameters." @default.
- W3015766988 created "2020-04-17" @default.
- W3015766988 creator A5048635513 @default.
- W3015766988 creator A5078193273 @default.
- W3015766988 creator A5088644023 @default.
- W3015766988 date "2020-06-01" @default.
- W3015766988 modified "2023-09-25" @default.
- W3015766988 title "Bayesian identification and model comparison for random property fields derived from material microstructure" @default.
- W3015766988 cites W1170944108 @default.
- W3015766988 cites W1844114507 @default.
- W3015766988 cites W1980171944 @default.
- W3015766988 cites W1981159745 @default.
- W3015766988 cites W1982703896 @default.
- W3015766988 cites W1984930851 @default.
- W3015766988 cites W1986684648 @default.
- W3015766988 cites W1989993440 @default.
- W3015766988 cites W1999091229 @default.
- W3015766988 cites W2008584207 @default.
- W3015766988 cites W2010020165 @default.
- W3015766988 cites W2018464171 @default.
- W3015766988 cites W2044691915 @default.
- W3015766988 cites W2044721184 @default.
- W3015766988 cites W2045561539 @default.
- W3015766988 cites W2048447328 @default.
- W3015766988 cites W2055460625 @default.
- W3015766988 cites W2059116590 @default.
- W3015766988 cites W2065620939 @default.
- W3015766988 cites W2067478553 @default.
- W3015766988 cites W2068157303 @default.
- W3015766988 cites W2069626069 @default.
- W3015766988 cites W2087752560 @default.
- W3015766988 cites W2108888387 @default.
- W3015766988 cites W2113318831 @default.
- W3015766988 cites W2116689067 @default.
- W3015766988 cites W2140735329 @default.
- W3015766988 cites W2158087377 @default.
- W3015766988 cites W2166670624 @default.
- W3015766988 cites W2291242194 @default.
- W3015766988 cites W2308328004 @default.
- W3015766988 cites W2310667168 @default.
- W3015766988 cites W2415276149 @default.
- W3015766988 cites W2546481309 @default.
- W3015766988 cites W2619158974 @default.
- W3015766988 cites W2746440938 @default.
- W3015766988 cites W2775071443 @default.
- W3015766988 cites W2925236398 @default.
- W3015766988 cites W2951231773 @default.
- W3015766988 cites W749200212 @default.
- W3015766988 doi "https://doi.org/10.1016/j.cma.2020.113026" @default.
- W3015766988 hasPublicationYear "2020" @default.
- W3015766988 type Work @default.
- W3015766988 sameAs 3015766988 @default.
- W3015766988 citedByCount "20" @default.
- W3015766988 countsByYear W30157669882021 @default.
- W3015766988 countsByYear W30157669882022 @default.
- W3015766988 countsByYear W30157669882023 @default.
- W3015766988 crossrefType "journal-article" @default.
- W3015766988 hasAuthorship W3015766988A5048635513 @default.
- W3015766988 hasAuthorship W3015766988A5078193273 @default.
- W3015766988 hasAuthorship W3015766988A5088644023 @default.
- W3015766988 hasConcept C102634674 @default.
- W3015766988 hasConcept C105795698 @default.
- W3015766988 hasConcept C107673813 @default.
- W3015766988 hasConcept C11413529 @default.
- W3015766988 hasConcept C127313418 @default.
- W3015766988 hasConcept C130402806 @default.
- W3015766988 hasConcept C134306372 @default.
- W3015766988 hasConcept C145420912 @default.
- W3015766988 hasConcept C160234255 @default.
- W3015766988 hasConcept C179428855 @default.
- W3015766988 hasConcept C28826006 @default.
- W3015766988 hasConcept C32230216 @default.
- W3015766988 hasConcept C33923547 @default.
- W3015766988 hasConcept C40382383 @default.
- W3015766988 hasConcept C41008148 @default.
- W3015766988 hasConcept C49204034 @default.
- W3015766988 hasConcept C57830394 @default.
- W3015766988 hasConceptScore W3015766988C102634674 @default.
- W3015766988 hasConceptScore W3015766988C105795698 @default.
- W3015766988 hasConceptScore W3015766988C107673813 @default.
- W3015766988 hasConceptScore W3015766988C11413529 @default.
- W3015766988 hasConceptScore W3015766988C127313418 @default.
- W3015766988 hasConceptScore W3015766988C130402806 @default.
- W3015766988 hasConceptScore W3015766988C134306372 @default.
- W3015766988 hasConceptScore W3015766988C145420912 @default.
- W3015766988 hasConceptScore W3015766988C160234255 @default.
- W3015766988 hasConceptScore W3015766988C179428855 @default.
- W3015766988 hasConceptScore W3015766988C28826006 @default.
- W3015766988 hasConceptScore W3015766988C32230216 @default.
- W3015766988 hasConceptScore W3015766988C33923547 @default.
- W3015766988 hasConceptScore W3015766988C40382383 @default.
- W3015766988 hasConceptScore W3015766988C41008148 @default.
- W3015766988 hasConceptScore W3015766988C49204034 @default.
- W3015766988 hasConceptScore W3015766988C57830394 @default.
- W3015766988 hasLocation W30157669881 @default.
- W3015766988 hasOpenAccess W3015766988 @default.
- W3015766988 hasPrimaryLocation W30157669881 @default.
- W3015766988 hasRelatedWork W1529069387 @default.