Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015784903> ?p ?o ?g. }
- W3015784903 endingPage "112938" @default.
- W3015784903 startingPage "112938" @default.
- W3015784903 abstract "Quasi-stable electrical fields in the EEG, called microstates carry information on the dynamics of large scale brain networks. Using machine learning techniques, we explored whether abnormalities in microstates can be used to classify patients with schizophrenia and healthy controls. We applied multivariate pattern analysis of microstate features to create a specified feature set to represent microstate characteristics. Machine learning approaches using these features for classification of patients with schizophrenia were compared with prior EEG based machine learning studies. Our microstate segmentation in both patients with schizophrenia and healthy controls yielded topographies that were similar to the normative database established earlier by Koenig et al. Our machine learning model was based on large sample size, low number of features and state-of-art K-fold cross-validation technique. The multivariate analysis revealed three patterns of correlated features, which yielded an AUC of 0.84 for the group separation (accuracy: 82.7%, sensitivity/specificity: 83.5%/85.3%). Microstate segmentation of resting state EEG results in informative features to discriminate patients with schizophrenia from healthy individuals. Moreover, alteration in microstate measures may represent disturbed activity of networks in patients with schizophrenia." @default.
- W3015784903 created "2020-04-17" @default.
- W3015784903 creator A5024434180 @default.
- W3015784903 creator A5062114165 @default.
- W3015784903 creator A5082430912 @default.
- W3015784903 date "2020-06-01" @default.
- W3015784903 modified "2023-10-18" @default.
- W3015784903 title "Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls" @default.
- W3015784903 cites W1165218784 @default.
- W3015784903 cites W1964172790 @default.
- W3015784903 cites W1965545010 @default.
- W3015784903 cites W1967466600 @default.
- W3015784903 cites W1972125991 @default.
- W3015784903 cites W1976522288 @default.
- W3015784903 cites W1983394941 @default.
- W3015784903 cites W1991362940 @default.
- W3015784903 cites W1996020380 @default.
- W3015784903 cites W1998741299 @default.
- W3015784903 cites W2001015421 @default.
- W3015784903 cites W2006114596 @default.
- W3015784903 cites W2011251121 @default.
- W3015784903 cites W2038018643 @default.
- W3015784903 cites W2042337339 @default.
- W3015784903 cites W2044461825 @default.
- W3015784903 cites W2047511931 @default.
- W3015784903 cites W2049676210 @default.
- W3015784903 cites W2057569029 @default.
- W3015784903 cites W2059624060 @default.
- W3015784903 cites W2061339369 @default.
- W3015784903 cites W2068117910 @default.
- W3015784903 cites W2069822112 @default.
- W3015784903 cites W2095651675 @default.
- W3015784903 cites W2099943815 @default.
- W3015784903 cites W2100959503 @default.
- W3015784903 cites W2106873519 @default.
- W3015784903 cites W2111406541 @default.
- W3015784903 cites W2113226993 @default.
- W3015784903 cites W2123163997 @default.
- W3015784903 cites W2126159475 @default.
- W3015784903 cites W2128470552 @default.
- W3015784903 cites W2130031954 @default.
- W3015784903 cites W2131216884 @default.
- W3015784903 cites W2136487516 @default.
- W3015784903 cites W2142490264 @default.
- W3015784903 cites W2158698691 @default.
- W3015784903 cites W2166475545 @default.
- W3015784903 cites W2168534058 @default.
- W3015784903 cites W2171746332 @default.
- W3015784903 cites W2296519936 @default.
- W3015784903 cites W2319534434 @default.
- W3015784903 cites W2339017320 @default.
- W3015784903 cites W2343617890 @default.
- W3015784903 cites W2421101021 @default.
- W3015784903 cites W2480195998 @default.
- W3015784903 cites W2498492890 @default.
- W3015784903 cites W2507937192 @default.
- W3015784903 cites W2733223237 @default.
- W3015784903 cites W2756328853 @default.
- W3015784903 cites W2757893427 @default.
- W3015784903 cites W2772704314 @default.
- W3015784903 cites W2792919287 @default.
- W3015784903 cites W2800950587 @default.
- W3015784903 cites W2808252767 @default.
- W3015784903 cites W2950049130 @default.
- W3015784903 cites W2963389298 @default.
- W3015784903 doi "https://doi.org/10.1016/j.psychres.2020.112938" @default.
- W3015784903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32315875" @default.
- W3015784903 hasPublicationYear "2020" @default.
- W3015784903 type Work @default.
- W3015784903 sameAs 3015784903 @default.
- W3015784903 citedByCount "42" @default.
- W3015784903 countsByYear W30157849032020 @default.
- W3015784903 countsByYear W30157849032021 @default.
- W3015784903 countsByYear W30157849032022 @default.
- W3015784903 countsByYear W30157849032023 @default.
- W3015784903 crossrefType "journal-article" @default.
- W3015784903 hasAuthorship W3015784903A5024434180 @default.
- W3015784903 hasAuthorship W3015784903A5062114165 @default.
- W3015784903 hasAuthorship W3015784903A5082430912 @default.
- W3015784903 hasBestOaLocation W30157849031 @default.
- W3015784903 hasConcept C118552586 @default.
- W3015784903 hasConcept C119857082 @default.
- W3015784903 hasConcept C138885662 @default.
- W3015784903 hasConcept C153180895 @default.
- W3015784903 hasConcept C154945302 @default.
- W3015784903 hasConcept C15744967 @default.
- W3015784903 hasConcept C161584116 @default.
- W3015784903 hasConcept C169760540 @default.
- W3015784903 hasConcept C2776401178 @default.
- W3015784903 hasConcept C2776412080 @default.
- W3015784903 hasConcept C38180746 @default.
- W3015784903 hasConcept C41008148 @default.
- W3015784903 hasConcept C41895202 @default.
- W3015784903 hasConcept C45424060 @default.
- W3015784903 hasConcept C522805319 @default.
- W3015784903 hasConceptScore W3015784903C118552586 @default.
- W3015784903 hasConceptScore W3015784903C119857082 @default.
- W3015784903 hasConceptScore W3015784903C138885662 @default.