Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015791746> ?p ?o ?g. }
- W3015791746 endingPage "173" @default.
- W3015791746 startingPage "162" @default.
- W3015791746 abstract "•Artificial intelligence-based algorithms allow prediction of retinal function from the retinal structure. •This facilitates precise functional assessment of patients with geographic atrophy. •“Inferred sensitivity” may be used as a quasifunctional surrogate endpoint in trials. •“Inferred sensitivity” can be derived for patients unfit for psychophysical testing. •In proximity to the geographic atrophy boundary, rod dysfunction exceeds cone dysfunction. Purpose To investigate the association between retinal microstructure and cone and rod function in geographic atrophy (GA) secondary to age-related macular degeneration (AMD) by using artificial intelligence (AI) algorithms. Design Prospective, observational case series. Methods A total of 41 eyes of 41 patients (75.8 ± 8.4 years old; 22 females) from a tertiary referral hospital were included. Mesopic, dark-adapted (DA) cyan and red sensitivities were assessed by using fundus-controlled perimetry (“microperimetry”); and retinal microstructure was assessed by using spectral-domain optical-coherence-tomography (SD-OCT), fundus autofluorescence (FAF), and near-infrared-reflectance (IR) imaging. Layer thicknesses and intensities and FAF and IR intensities were extracted for each test point. The cross-validated mean absolute error (MAE) was evaluated for random forest-based predictions of retinal sensitivity with and without patient-specific training data and percentage of increased mean-squared error (%IncMSE) as measurement of feature importance. Results Retinal sensitivity was predicted with a MAE of 4.64 dB for mesopic, 4.89 dB for DA cyan, and 4.40 dB for DA red testing in the absence of patient-specific data. Partial addition of patient-specific sensitivity data to the training sets decreased the MAE to 2.89 dB, 2.86 dB, and 2.77 dB. For all 3 types of testing, the outer nuclear layer thickness constituted the most important predictive feature (35.0, 42.22, and 53.74 %IncMSE). Spatially resolved mapping of “inferred sensitivity” revealed regions with differential degrees of mesopic and DA cyan sensitivity loss outside of the GA lesions. Conclusions “Inferred sensitivity” accurately reflected retinal function in patients with GA. Mapping of “inferred sensitivity” could facilitate monitoring of disease progression and serve as “quasi functional” surrogate outcome in clinical trials, especially in consideration of retinal regions beyond areas of GA. To investigate the association between retinal microstructure and cone and rod function in geographic atrophy (GA) secondary to age-related macular degeneration (AMD) by using artificial intelligence (AI) algorithms. Prospective, observational case series. A total of 41 eyes of 41 patients (75.8 ± 8.4 years old; 22 females) from a tertiary referral hospital were included. Mesopic, dark-adapted (DA) cyan and red sensitivities were assessed by using fundus-controlled perimetry (“microperimetry”); and retinal microstructure was assessed by using spectral-domain optical-coherence-tomography (SD-OCT), fundus autofluorescence (FAF), and near-infrared-reflectance (IR) imaging. Layer thicknesses and intensities and FAF and IR intensities were extracted for each test point. The cross-validated mean absolute error (MAE) was evaluated for random forest-based predictions of retinal sensitivity with and without patient-specific training data and percentage of increased mean-squared error (%IncMSE) as measurement of feature importance. Retinal sensitivity was predicted with a MAE of 4.64 dB for mesopic, 4.89 dB for DA cyan, and 4.40 dB for DA red testing in the absence of patient-specific data. Partial addition of patient-specific sensitivity data to the training sets decreased the MAE to 2.89 dB, 2.86 dB, and 2.77 dB. For all 3 types of testing, the outer nuclear layer thickness constituted the most important predictive feature (35.0, 42.22, and 53.74 %IncMSE). Spatially resolved mapping of “inferred sensitivity” revealed regions with differential degrees of mesopic and DA cyan sensitivity loss outside of the GA lesions. “Inferred sensitivity” accurately reflected retinal function in patients with GA. Mapping of “inferred sensitivity” could facilitate monitoring of disease progression and serve as “quasi functional” surrogate outcome in clinical trials, especially in consideration of retinal regions beyond areas of GA." @default.
- W3015791746 created "2020-04-17" @default.
- W3015791746 creator A5004965117 @default.
- W3015791746 creator A5014052168 @default.
- W3015791746 creator A5016922490 @default.
- W3015791746 creator A5020915049 @default.
- W3015791746 creator A5031620559 @default.
- W3015791746 creator A5032728501 @default.
- W3015791746 creator A5033338552 @default.
- W3015791746 creator A5054706794 @default.
- W3015791746 creator A5059711343 @default.
- W3015791746 creator A5076944459 @default.
- W3015791746 creator A5080956530 @default.
- W3015791746 date "2020-09-01" @default.
- W3015791746 modified "2023-10-03" @default.
- W3015791746 title "Determinants of Cone and Rod Functions in Geographic Atrophy: AI-Based Structure-Function Correlation" @default.
- W3015791746 cites W1665485129 @default.
- W3015791746 cites W1996821302 @default.
- W3015791746 cites W1999109674 @default.
- W3015791746 cites W2018243289 @default.
- W3015791746 cites W2057097982 @default.
- W3015791746 cites W2073154799 @default.
- W3015791746 cites W2409994817 @default.
- W3015791746 cites W2439734762 @default.
- W3015791746 cites W2561256729 @default.
- W3015791746 cites W2563886653 @default.
- W3015791746 cites W2604125919 @default.
- W3015791746 cites W2611507404 @default.
- W3015791746 cites W2735344948 @default.
- W3015791746 cites W2735396028 @default.
- W3015791746 cites W2765808721 @default.
- W3015791746 cites W2802530436 @default.
- W3015791746 cites W2802822211 @default.
- W3015791746 cites W2885918621 @default.
- W3015791746 cites W2888236772 @default.
- W3015791746 cites W2897889175 @default.
- W3015791746 cites W2901659230 @default.
- W3015791746 cites W2911964244 @default.
- W3015791746 cites W2912329325 @default.
- W3015791746 cites W2950789339 @default.
- W3015791746 cites W2965145448 @default.
- W3015791746 cites W2966710025 @default.
- W3015791746 cites W4247214019 @default.
- W3015791746 doi "https://doi.org/10.1016/j.ajo.2020.04.003" @default.
- W3015791746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32289293" @default.
- W3015791746 hasPublicationYear "2020" @default.
- W3015791746 type Work @default.
- W3015791746 sameAs 3015791746 @default.
- W3015791746 citedByCount "31" @default.
- W3015791746 countsByYear W30157917462020 @default.
- W3015791746 countsByYear W30157917462021 @default.
- W3015791746 countsByYear W30157917462022 @default.
- W3015791746 countsByYear W30157917462023 @default.
- W3015791746 crossrefType "journal-article" @default.
- W3015791746 hasAuthorship W3015791746A5004965117 @default.
- W3015791746 hasAuthorship W3015791746A5014052168 @default.
- W3015791746 hasAuthorship W3015791746A5016922490 @default.
- W3015791746 hasAuthorship W3015791746A5020915049 @default.
- W3015791746 hasAuthorship W3015791746A5031620559 @default.
- W3015791746 hasAuthorship W3015791746A5032728501 @default.
- W3015791746 hasAuthorship W3015791746A5033338552 @default.
- W3015791746 hasAuthorship W3015791746A5054706794 @default.
- W3015791746 hasAuthorship W3015791746A5059711343 @default.
- W3015791746 hasAuthorship W3015791746A5076944459 @default.
- W3015791746 hasAuthorship W3015791746A5080956530 @default.
- W3015791746 hasConcept C118487528 @default.
- W3015791746 hasConcept C120665830 @default.
- W3015791746 hasConcept C121332964 @default.
- W3015791746 hasConcept C122776584 @default.
- W3015791746 hasConcept C2776391266 @default.
- W3015791746 hasConcept C2778818243 @default.
- W3015791746 hasConcept C2779100554 @default.
- W3015791746 hasConcept C2780827179 @default.
- W3015791746 hasConcept C54497739 @default.
- W3015791746 hasConcept C71924100 @default.
- W3015791746 hasConcept C90171120 @default.
- W3015791746 hasConceptScore W3015791746C118487528 @default.
- W3015791746 hasConceptScore W3015791746C120665830 @default.
- W3015791746 hasConceptScore W3015791746C121332964 @default.
- W3015791746 hasConceptScore W3015791746C122776584 @default.
- W3015791746 hasConceptScore W3015791746C2776391266 @default.
- W3015791746 hasConceptScore W3015791746C2778818243 @default.
- W3015791746 hasConceptScore W3015791746C2779100554 @default.
- W3015791746 hasConceptScore W3015791746C2780827179 @default.
- W3015791746 hasConceptScore W3015791746C54497739 @default.
- W3015791746 hasConceptScore W3015791746C71924100 @default.
- W3015791746 hasConceptScore W3015791746C90171120 @default.
- W3015791746 hasFunder F4320306811 @default.
- W3015791746 hasFunder F4320320879 @default.
- W3015791746 hasFunder F4320324900 @default.
- W3015791746 hasFunder F4320326336 @default.
- W3015791746 hasLocation W30157917461 @default.
- W3015791746 hasLocation W30157917462 @default.
- W3015791746 hasOpenAccess W3015791746 @default.
- W3015791746 hasPrimaryLocation W30157917461 @default.
- W3015791746 hasRelatedWork W10941023 @default.
- W3015791746 hasRelatedWork W1983920824 @default.
- W3015791746 hasRelatedWork W1992669837 @default.