Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015796607> ?p ?o ?g. }
- W3015796607 endingPage "152" @default.
- W3015796607 startingPage "142" @default.
- W3015796607 abstract "X-rays are frequently used for characterizing both tooth tissues and dental materials. Whereas radiographs and tomography utilize absorption contrast for retrieving details, chemical mapping is usually achieved by energy dispersive X-ray (EDX) analysis that is stimulated under vacuum in electron microscopes. However, the relatively dense mineralized composition of teeth, and the frequent inclusion of a large range of elements in filling materials raise the possibility that other X-ray based techniques such as X-ray fluorescence (XRF) spectroscopy may strongly contribute to investigations of a large variety of dental structures. By exploiting the fluorescence excited by micron sized X-rays (µXRF) it is possible to map minute quantities of a large range of elements (from aluminum to uranium), where spectra containing signals from multiple different elements can be resolved non-destructively and concomitantly. The high penetration depth of X-rays makes XRF highly effective at detecting variable compositions with information emerging from tooth tissues situated well beneath the sample surface. The method supports minimal sample preparation and, different from electron microscopy, it facilitates investigation of hydrated dental materials. Direct comparison of µXRF and confocal µXRF (CµXRF) with SEM-EDX reveals micro zones of chemical heterogeneity in the complex 3D architecture of root canal fillings. These methods reproducibly clarify the mutual arrangement of biomaterials in both fresh fillings as well as in repeatedly treated old teeth of unknown history. The results showcase the complementarity of X-ray and electron based elemental mapping for dental materials research. Chemical characterization of mineralized tissues such as tooth dentine is often performed using energy dispersive X-ray spectroscopy (EDS/EDX) analysis by scanning electron microscopy (SEM). The widespread use of electron microscopes and simplified detector designs have made this form of chemical and structural analysis extremely popular. However, excitation by electrons is limited to the upper microns of the tissue, and these may not well represent the chemical composition of the bulk. Especially when heavier elements are of interest and when dental filling materials exhibit diffusion into the tooth, little is known about the spatial distribution. Here we show how complementary X-ray fluorescence data originating by electron and X-ray excitation can help visualize the distribution and impregnation of heavy elements through teeth, e.g. for root canal treatment." @default.
- W3015796607 created "2020-04-17" @default.
- W3015796607 creator A5020211952 @default.
- W3015796607 creator A5060178672 @default.
- W3015796607 creator A5064181327 @default.
- W3015796607 creator A5079377725 @default.
- W3015796607 date "2020-06-01" @default.
- W3015796607 modified "2023-10-02" @default.
- W3015796607 title "Chemical mapping of teeth in 2D and 3D: X-ray fluorescence reveals hidden details in dentine surrounding fillings" @default.
- W3015796607 cites W1516608429 @default.
- W3015796607 cites W1862508438 @default.
- W3015796607 cites W1877563494 @default.
- W3015796607 cites W1967843640 @default.
- W3015796607 cites W1968752682 @default.
- W3015796607 cites W1971764818 @default.
- W3015796607 cites W1977246576 @default.
- W3015796607 cites W1981217686 @default.
- W3015796607 cites W1987833759 @default.
- W3015796607 cites W2015374944 @default.
- W3015796607 cites W2020119048 @default.
- W3015796607 cites W2033725375 @default.
- W3015796607 cites W2039219115 @default.
- W3015796607 cites W2043153516 @default.
- W3015796607 cites W2056998913 @default.
- W3015796607 cites W2057559281 @default.
- W3015796607 cites W2083752796 @default.
- W3015796607 cites W2093049956 @default.
- W3015796607 cites W2093881056 @default.
- W3015796607 cites W2109523987 @default.
- W3015796607 cites W2113946462 @default.
- W3015796607 cites W2122223083 @default.
- W3015796607 cites W2129106945 @default.
- W3015796607 cites W2146132963 @default.
- W3015796607 cites W2148993254 @default.
- W3015796607 cites W2205441305 @default.
- W3015796607 cites W2333410487 @default.
- W3015796607 cites W2344641482 @default.
- W3015796607 cites W2513130739 @default.
- W3015796607 cites W2599582479 @default.
- W3015796607 cites W2606892417 @default.
- W3015796607 cites W2734377202 @default.
- W3015796607 cites W2734535160 @default.
- W3015796607 cites W2765994557 @default.
- W3015796607 cites W2884643805 @default.
- W3015796607 cites W2903294899 @default.
- W3015796607 cites W4238768614 @default.
- W3015796607 doi "https://doi.org/10.1016/j.actbio.2020.04.008" @default.
- W3015796607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32294552" @default.
- W3015796607 hasPublicationYear "2020" @default.
- W3015796607 type Work @default.
- W3015796607 sameAs 3015796607 @default.
- W3015796607 citedByCount "16" @default.
- W3015796607 countsByYear W30157966072021 @default.
- W3015796607 countsByYear W30157966072022 @default.
- W3015796607 countsByYear W30157966072023 @default.
- W3015796607 crossrefType "journal-article" @default.
- W3015796607 hasAuthorship W3015796607A5020211952 @default.
- W3015796607 hasAuthorship W3015796607A5060178672 @default.
- W3015796607 hasAuthorship W3015796607A5064181327 @default.
- W3015796607 hasAuthorship W3015796607A5079377725 @default.
- W3015796607 hasConcept C113196181 @default.
- W3015796607 hasConcept C120665830 @default.
- W3015796607 hasConcept C121332964 @default.
- W3015796607 hasConcept C127313418 @default.
- W3015796607 hasConcept C147080431 @default.
- W3015796607 hasConcept C149849071 @default.
- W3015796607 hasConcept C159078339 @default.
- W3015796607 hasConcept C159985019 @default.
- W3015796607 hasConcept C162170617 @default.
- W3015796607 hasConcept C171250308 @default.
- W3015796607 hasConcept C178790620 @default.
- W3015796607 hasConcept C185592680 @default.
- W3015796607 hasConcept C192562407 @default.
- W3015796607 hasConcept C193493375 @default.
- W3015796607 hasConcept C199289684 @default.
- W3015796607 hasConcept C26771246 @default.
- W3015796607 hasConcept C2777131851 @default.
- W3015796607 hasConcept C2779263046 @default.
- W3015796607 hasConcept C2779328170 @default.
- W3015796607 hasConcept C2780841128 @default.
- W3015796607 hasConcept C43617362 @default.
- W3015796607 hasConcept C62649853 @default.
- W3015796607 hasConcept C65597285 @default.
- W3015796607 hasConcept C91881484 @default.
- W3015796607 hasConceptScore W3015796607C113196181 @default.
- W3015796607 hasConceptScore W3015796607C120665830 @default.
- W3015796607 hasConceptScore W3015796607C121332964 @default.
- W3015796607 hasConceptScore W3015796607C127313418 @default.
- W3015796607 hasConceptScore W3015796607C147080431 @default.
- W3015796607 hasConceptScore W3015796607C149849071 @default.
- W3015796607 hasConceptScore W3015796607C159078339 @default.
- W3015796607 hasConceptScore W3015796607C159985019 @default.
- W3015796607 hasConceptScore W3015796607C162170617 @default.
- W3015796607 hasConceptScore W3015796607C171250308 @default.
- W3015796607 hasConceptScore W3015796607C178790620 @default.
- W3015796607 hasConceptScore W3015796607C185592680 @default.
- W3015796607 hasConceptScore W3015796607C192562407 @default.
- W3015796607 hasConceptScore W3015796607C193493375 @default.