Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015801892> ?p ?o ?g. }
- W3015801892 endingPage "105883" @default.
- W3015801892 startingPage "105883" @default.
- W3015801892 abstract "Abstract Deep neural network (DNN) with a complex structure and multiple nonlinear processing units has achieved great success for feature learning in machinery fault diagnosis. Due to the “black box” problem in DNNs, there are still many obstacles to the application of DNNs in fault diagnosis. This paper proposes a new DNN model, knowledge-based deep belief network (KBDBN), which inserts confidence and classification rules into the deep network structure. This not only enables the model to have good pattern recognition performance but also to adaptively determine the network structure and obtain a good understanding of the features learned by the deep network. The knowledge extraction algorithm is proposed to offer a good representation of layerwise networks (i.e., restricted Boltzmann machines (RBMs)). The layerwise extraction can produce an improvement in feature learning of RBMs. Moreover, the extracted confidence rules that characterize the deep network offers a novel method for insertion of prior knowledge in the deep RBM. The classification knowledge extracted from the data is further inserted into the classification layer of DBN. KBDBN is used to generate the discriminant features from the data and then construct a complex mapping between vibration signals and gearbox defects. The testing results of KBDBN on a gearbox test rig not only effectively extracts knowledge from the deep network, but also shows better classification performance than the typical classifiers and DBNs. Moreover, the interpretable network model helps us understand what DBN has learned from vibration signals and then makes it be applied easily in real-world cases." @default.
- W3015801892 created "2020-04-17" @default.
- W3015801892 creator A5041454124 @default.
- W3015801892 creator A5056362874 @default.
- W3015801892 date "2020-06-01" @default.
- W3015801892 modified "2023-10-03" @default.
- W3015801892 title "Knowledge extraction and insertion to deep belief network for gearbox fault diagnosis" @default.
- W3015801892 cites W1969323767 @default.
- W3015801892 cites W1980817237 @default.
- W3015801892 cites W1989789052 @default.
- W3015801892 cites W2020474792 @default.
- W3015801892 cites W2036109700 @default.
- W3015801892 cites W2036368940 @default.
- W3015801892 cites W2039872426 @default.
- W3015801892 cites W2047094503 @default.
- W3015801892 cites W2063922127 @default.
- W3015801892 cites W2074724805 @default.
- W3015801892 cites W2086410990 @default.
- W3015801892 cites W2094490310 @default.
- W3015801892 cites W2100066980 @default.
- W3015801892 cites W2116767760 @default.
- W3015801892 cites W2121315035 @default.
- W3015801892 cites W2136922672 @default.
- W3015801892 cites W2141188346 @default.
- W3015801892 cites W2160987092 @default.
- W3015801892 cites W2184192902 @default.
- W3015801892 cites W2292254049 @default.
- W3015801892 cites W2404692435 @default.
- W3015801892 cites W2440930599 @default.
- W3015801892 cites W2461729787 @default.
- W3015801892 cites W2490731853 @default.
- W3015801892 cites W2556838012 @default.
- W3015801892 cites W2595796352 @default.
- W3015801892 cites W2601590138 @default.
- W3015801892 cites W2619304139 @default.
- W3015801892 cites W2735326783 @default.
- W3015801892 cites W2744604411 @default.
- W3015801892 cites W2744790985 @default.
- W3015801892 cites W2746111230 @default.
- W3015801892 cites W2783074568 @default.
- W3015801892 cites W2793039588 @default.
- W3015801892 cites W2802292836 @default.
- W3015801892 cites W2808496542 @default.
- W3015801892 cites W2810292802 @default.
- W3015801892 cites W2827159893 @default.
- W3015801892 cites W2889538283 @default.
- W3015801892 cites W2919115771 @default.
- W3015801892 cites W2963332217 @default.
- W3015801892 cites W2988486362 @default.
- W3015801892 cites W3022640100 @default.
- W3015801892 doi "https://doi.org/10.1016/j.knosys.2020.105883" @default.
- W3015801892 hasPublicationYear "2020" @default.
- W3015801892 type Work @default.
- W3015801892 sameAs 3015801892 @default.
- W3015801892 citedByCount "64" @default.
- W3015801892 countsByYear W30158018922020 @default.
- W3015801892 countsByYear W30158018922021 @default.
- W3015801892 countsByYear W30158018922022 @default.
- W3015801892 countsByYear W30158018922023 @default.
- W3015801892 crossrefType "journal-article" @default.
- W3015801892 hasAuthorship W3015801892A5041454124 @default.
- W3015801892 hasAuthorship W3015801892A5056362874 @default.
- W3015801892 hasConcept C108583219 @default.
- W3015801892 hasConcept C127313418 @default.
- W3015801892 hasConcept C154945302 @default.
- W3015801892 hasConcept C165205528 @default.
- W3015801892 hasConcept C175551986 @default.
- W3015801892 hasConcept C185592680 @default.
- W3015801892 hasConcept C41008148 @default.
- W3015801892 hasConcept C43617362 @default.
- W3015801892 hasConcept C4725764 @default.
- W3015801892 hasConcept C97385483 @default.
- W3015801892 hasConceptScore W3015801892C108583219 @default.
- W3015801892 hasConceptScore W3015801892C127313418 @default.
- W3015801892 hasConceptScore W3015801892C154945302 @default.
- W3015801892 hasConceptScore W3015801892C165205528 @default.
- W3015801892 hasConceptScore W3015801892C175551986 @default.
- W3015801892 hasConceptScore W3015801892C185592680 @default.
- W3015801892 hasConceptScore W3015801892C41008148 @default.
- W3015801892 hasConceptScore W3015801892C43617362 @default.
- W3015801892 hasConceptScore W3015801892C4725764 @default.
- W3015801892 hasConceptScore W3015801892C97385483 @default.
- W3015801892 hasFunder F4320321001 @default.
- W3015801892 hasFunder F4320335787 @default.
- W3015801892 hasLocation W30158018921 @default.
- W3015801892 hasOpenAccess W3015801892 @default.
- W3015801892 hasPrimaryLocation W30158018921 @default.
- W3015801892 hasRelatedWork W1530536511 @default.
- W3015801892 hasRelatedWork W2092874535 @default.
- W3015801892 hasRelatedWork W2126887587 @default.
- W3015801892 hasRelatedWork W2248239756 @default.
- W3015801892 hasRelatedWork W2572334665 @default.
- W3015801892 hasRelatedWork W2741836081 @default.
- W3015801892 hasRelatedWork W2991591812 @default.
- W3015801892 hasRelatedWork W3082895349 @default.
- W3015801892 hasRelatedWork W3136021864 @default.
- W3015801892 hasRelatedWork W1829305295 @default.
- W3015801892 hasVolume "197" @default.