Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015872583> ?p ?o ?g. }
- W3015872583 abstract "Abstract Copy number variation plays important roles in human complex diseases. The detection of copy number variants (CNVs) is identifying mean shift in genetic intensities to locate chromosomal breakpoints, the step of which is referred to as chromosomal segmentation. Many segmentation algorithms have been developed with a strong assumption of independent observations in the genetic loci, and they assume each locus has an equal chance to be a breakpoint (i.e., boundary of CNVs). However, this assumption is violated in the genetics perspective due to the existence of correlation among genomic positions such as linkage disequilibrium (LD). Our study showed that the LD structure is related to the location distribution of CNVs which indeed presents a non-random pattern on the genome. To generate more accurate CNVs, we therefore proposed a novel algorithm, LDcnv, that models the CNV data with its biological characteristics relating to genetic correlation (i.e., LD). To evaluate the performance of LDcnv, we conducted extensive simulations and analyzed large-scale HapMap datasets. We showed that LDcnv presents high accuracy, stability and robustness in CNV detection and higher precision in detecting short CNVs compared to existing methods. We also theoretically demonstrated the correlation structure of CNV data, which further supports the necessity of integrating biological structure in statistical methods for CNV detection. This new segmentation algorithm has a wide scope of application with next-generation sequencing data analysis and single-cell sequencing analysis. Author Summary Copy number variants (CNVs) refers to gains or losses of the DNA segments in comparison to a reference genome. CNVs have garnered extensive interests in recent years as they play an important role susceptibility to disorders and diseases such as autism, schizophrenia and cancer [1-7]. Although innovation in modern technology is promoting the discoveries related to CNVs, the methodology for CNV detection is still lagging, which limits the novel discoveries regarding the role of CNVs in complex diseases. In this study, we are proposing a novel segmentation algorithm, LDcnv, to accurately locate the breakpoints or boundaries of CNVs in the human genome. Instead of utilizing an independent assumption of the signal intensities as has been used in traditional segmentation algorithms, LDcnv models the correlation structure in the genome in a change-point CNV detection model, which allows for accurate and fast computation with a whole genome scan. Our study showed strong theoretical evidence of the existence of correlation structure in real CNV data, and we believe that taking this evidence into consideration will improve the power of CNV detection. Extensive simulation studies have demonstrated the advantage of the LDcnv algorithm in stability, robustness and accuracy over existing methods. We also used high-quality CNV profiles to further support the superior performance of the LDcnv algorithm over existing methods. The development of the LDcnv algorithm provides great insights for new directions in developing CNV detection tools." @default.
- W3015872583 created "2020-04-17" @default.
- W3015872583 creator A5078844929 @default.
- W3015872583 creator A5078945127 @default.
- W3015872583 creator A5081444057 @default.
- W3015872583 creator A5086844078 @default.
- W3015872583 date "2020-04-09" @default.
- W3015872583 modified "2023-09-26" @default.
- W3015872583 title "Integrating Genomic Correlation Structure Improves Copy Number Variations Detection" @default.
- W3015872583 cites W1520631102 @default.
- W3015872583 cites W1602265264 @default.
- W3015872583 cites W1605635382 @default.
- W3015872583 cites W1929985424 @default.
- W3015872583 cites W1968034825 @default.
- W3015872583 cites W1974542150 @default.
- W3015872583 cites W1984650972 @default.
- W3015872583 cites W1987680697 @default.
- W3015872583 cites W1993805321 @default.
- W3015872583 cites W2003619271 @default.
- W3015872583 cites W2010191716 @default.
- W3015872583 cites W2014002200 @default.
- W3015872583 cites W2021714239 @default.
- W3015872583 cites W2047361940 @default.
- W3015872583 cites W2061106441 @default.
- W3015872583 cites W2078273711 @default.
- W3015872583 cites W2086153290 @default.
- W3015872583 cites W2104549677 @default.
- W3015872583 cites W2107916366 @default.
- W3015872583 cites W2110374888 @default.
- W3015872583 cites W2122168521 @default.
- W3015872583 cites W2129005367 @default.
- W3015872583 cites W2133174470 @default.
- W3015872583 cites W2138183002 @default.
- W3015872583 cites W2138511474 @default.
- W3015872583 cites W2144759168 @default.
- W3015872583 cites W2144974645 @default.
- W3015872583 cites W2145034118 @default.
- W3015872583 cites W2146948473 @default.
- W3015872583 cites W2149681218 @default.
- W3015872583 cites W2153762432 @default.
- W3015872583 cites W2153994884 @default.
- W3015872583 cites W2162927194 @default.
- W3015872583 cites W2169964199 @default.
- W3015872583 cites W2551102722 @default.
- W3015872583 cites W2588626470 @default.
- W3015872583 cites W2607989387 @default.
- W3015872583 cites W2765153169 @default.
- W3015872583 cites W2773459529 @default.
- W3015872583 cites W2908790822 @default.
- W3015872583 cites W2952165232 @default.
- W3015872583 cites W2964275709 @default.
- W3015872583 cites W639607674 @default.
- W3015872583 doi "https://doi.org/10.1101/2020.04.08.032680" @default.
- W3015872583 hasPublicationYear "2020" @default.
- W3015872583 type Work @default.
- W3015872583 sameAs 3015872583 @default.
- W3015872583 citedByCount "0" @default.
- W3015872583 crossrefType "posted-content" @default.
- W3015872583 hasAuthorship W3015872583A5078844929 @default.
- W3015872583 hasAuthorship W3015872583A5078945127 @default.
- W3015872583 hasAuthorship W3015872583A5081444057 @default.
- W3015872583 hasAuthorship W3015872583A5086844078 @default.
- W3015872583 hasBestOaLocation W30158725831 @default.
- W3015872583 hasConcept C104317684 @default.
- W3015872583 hasConcept C117220453 @default.
- W3015872583 hasConcept C120821319 @default.
- W3015872583 hasConcept C124942203 @default.
- W3015872583 hasConcept C141231307 @default.
- W3015872583 hasConcept C151020129 @default.
- W3015872583 hasConcept C154945302 @default.
- W3015872583 hasConcept C166608930 @default.
- W3015872583 hasConcept C180754005 @default.
- W3015872583 hasConcept C197754878 @default.
- W3015872583 hasConcept C206936463 @default.
- W3015872583 hasConcept C2524010 @default.
- W3015872583 hasConcept C30481170 @default.
- W3015872583 hasConcept C33923547 @default.
- W3015872583 hasConcept C35605836 @default.
- W3015872583 hasConcept C41008148 @default.
- W3015872583 hasConcept C54355233 @default.
- W3015872583 hasConcept C63479239 @default.
- W3015872583 hasConcept C70721500 @default.
- W3015872583 hasConcept C84597430 @default.
- W3015872583 hasConcept C86803240 @default.
- W3015872583 hasConcept C89600930 @default.
- W3015872583 hasConceptScore W3015872583C104317684 @default.
- W3015872583 hasConceptScore W3015872583C117220453 @default.
- W3015872583 hasConceptScore W3015872583C120821319 @default.
- W3015872583 hasConceptScore W3015872583C124942203 @default.
- W3015872583 hasConceptScore W3015872583C141231307 @default.
- W3015872583 hasConceptScore W3015872583C151020129 @default.
- W3015872583 hasConceptScore W3015872583C154945302 @default.
- W3015872583 hasConceptScore W3015872583C166608930 @default.
- W3015872583 hasConceptScore W3015872583C180754005 @default.
- W3015872583 hasConceptScore W3015872583C197754878 @default.
- W3015872583 hasConceptScore W3015872583C206936463 @default.
- W3015872583 hasConceptScore W3015872583C2524010 @default.
- W3015872583 hasConceptScore W3015872583C30481170 @default.
- W3015872583 hasConceptScore W3015872583C33923547 @default.
- W3015872583 hasConceptScore W3015872583C35605836 @default.