Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015876941> ?p ?o ?g. }
- W3015876941 endingPage "107350" @default.
- W3015876941 startingPage "107350" @default.
- W3015876941 abstract "For over a decade, most wind turbines have worked by adapting their rotation speed to that of the wind. This operating method, now widely used, allows optimal tip speed ratio to be achieved whatever the weather conditions, and in fact produces much better output than stall controlled turbines, particularly in calm weather conditions. However, this improvement means that monitoring systems are required to adapt to constant macroscopic variations in load and speed. In addition, these non-stationary operating conditions make it difficult to undertake machine diagnostics over the long term, due to the fact that the operating conditions in which successive indicators are obtained will almost never be the same. The scientific community has, in many respects, proved the usefulness of regression analysis of these indicators in relation to properly selected variables. The focus of this paper is on regression methods based on machine learning tools, which are becoming more and more popular. The difficulty lies in designing a robust self-adaptive method for estimating the statistical behaviour of an indicator in relation to operating conditions. Indeed, the concern is that indicators may obey disparate and unpredictable multivariate laws: there are many complications which make it difficult to use linear regression tools. Kernel machines, used in this paper as a robust and efficient way of normalising indicators, have proved to be capable of greatly improving a monitoring system’s diagnostic capabilities. The demonstration is based on a practical example: monitoring a bearing defect by analysing the instantaneous angular speed of the wind turbine shaft line. As this defect can only be detected under certain operating conditions – a priori unknown – the chosen example will be particularly effective in highlighting the usefulness of such an approach." @default.
- W3015876941 created "2020-04-17" @default.
- W3015876941 creator A5022853612 @default.
- W3015876941 creator A5024171028 @default.
- W3015876941 creator A5083525572 @default.
- W3015876941 creator A5085942842 @default.
- W3015876941 creator A5087236139 @default.
- W3015876941 date "2020-09-01" @default.
- W3015876941 modified "2023-10-12" @default.
- W3015876941 title "Improving the monitoring indicators of a variable speed wind turbine using support vector regression" @default.
- W3015876941 cites W1985319896 @default.
- W3015876941 cites W2006609433 @default.
- W3015876941 cites W2022344229 @default.
- W3015876941 cites W2024991751 @default.
- W3015876941 cites W2039698541 @default.
- W3015876941 cites W2041915168 @default.
- W3015876941 cites W2063941608 @default.
- W3015876941 cites W2069659771 @default.
- W3015876941 cites W2077775389 @default.
- W3015876941 cites W2145911539 @default.
- W3015876941 cites W2152651571 @default.
- W3015876941 cites W2171074980 @default.
- W3015876941 cites W2178242555 @default.
- W3015876941 cites W2302067043 @default.
- W3015876941 cites W2464673710 @default.
- W3015876941 cites W2530294173 @default.
- W3015876941 cites W3101749733 @default.
- W3015876941 doi "https://doi.org/10.1016/j.apacoust.2020.107350" @default.
- W3015876941 hasPublicationYear "2020" @default.
- W3015876941 type Work @default.
- W3015876941 sameAs 3015876941 @default.
- W3015876941 citedByCount "5" @default.
- W3015876941 countsByYear W30158769412021 @default.
- W3015876941 countsByYear W30158769412023 @default.
- W3015876941 crossrefType "journal-article" @default.
- W3015876941 hasAuthorship W3015876941A5022853612 @default.
- W3015876941 hasAuthorship W3015876941A5024171028 @default.
- W3015876941 hasAuthorship W3015876941A5083525572 @default.
- W3015876941 hasAuthorship W3015876941A5085942842 @default.
- W3015876941 hasAuthorship W3015876941A5087236139 @default.
- W3015876941 hasBestOaLocation W30158769411 @default.
- W3015876941 hasConcept C119599485 @default.
- W3015876941 hasConcept C119857082 @default.
- W3015876941 hasConcept C121332964 @default.
- W3015876941 hasConcept C12267149 @default.
- W3015876941 hasConcept C124101348 @default.
- W3015876941 hasConcept C127413603 @default.
- W3015876941 hasConcept C133731056 @default.
- W3015876941 hasConcept C134306372 @default.
- W3015876941 hasConcept C135510737 @default.
- W3015876941 hasConcept C152877465 @default.
- W3015876941 hasConcept C153294291 @default.
- W3015876941 hasConcept C154945302 @default.
- W3015876941 hasConcept C161067210 @default.
- W3015876941 hasConcept C162324750 @default.
- W3015876941 hasConcept C182365436 @default.
- W3015876941 hasConcept C187736073 @default.
- W3015876941 hasConcept C25343380 @default.
- W3015876941 hasConcept C2775846686 @default.
- W3015876941 hasConcept C2775924081 @default.
- W3015876941 hasConcept C2778449969 @default.
- W3015876941 hasConcept C33923547 @default.
- W3015876941 hasConcept C41008148 @default.
- W3015876941 hasConcept C47446073 @default.
- W3015876941 hasConcept C61797465 @default.
- W3015876941 hasConcept C62520636 @default.
- W3015876941 hasConcept C78519656 @default.
- W3015876941 hasConcept C78600449 @default.
- W3015876941 hasConcept C81063470 @default.
- W3015876941 hasConceptScore W3015876941C119599485 @default.
- W3015876941 hasConceptScore W3015876941C119857082 @default.
- W3015876941 hasConceptScore W3015876941C121332964 @default.
- W3015876941 hasConceptScore W3015876941C12267149 @default.
- W3015876941 hasConceptScore W3015876941C124101348 @default.
- W3015876941 hasConceptScore W3015876941C127413603 @default.
- W3015876941 hasConceptScore W3015876941C133731056 @default.
- W3015876941 hasConceptScore W3015876941C134306372 @default.
- W3015876941 hasConceptScore W3015876941C135510737 @default.
- W3015876941 hasConceptScore W3015876941C152877465 @default.
- W3015876941 hasConceptScore W3015876941C153294291 @default.
- W3015876941 hasConceptScore W3015876941C154945302 @default.
- W3015876941 hasConceptScore W3015876941C161067210 @default.
- W3015876941 hasConceptScore W3015876941C162324750 @default.
- W3015876941 hasConceptScore W3015876941C182365436 @default.
- W3015876941 hasConceptScore W3015876941C187736073 @default.
- W3015876941 hasConceptScore W3015876941C25343380 @default.
- W3015876941 hasConceptScore W3015876941C2775846686 @default.
- W3015876941 hasConceptScore W3015876941C2775924081 @default.
- W3015876941 hasConceptScore W3015876941C2778449969 @default.
- W3015876941 hasConceptScore W3015876941C33923547 @default.
- W3015876941 hasConceptScore W3015876941C41008148 @default.
- W3015876941 hasConceptScore W3015876941C47446073 @default.
- W3015876941 hasConceptScore W3015876941C61797465 @default.
- W3015876941 hasConceptScore W3015876941C62520636 @default.
- W3015876941 hasConceptScore W3015876941C78519656 @default.
- W3015876941 hasConceptScore W3015876941C78600449 @default.
- W3015876941 hasConceptScore W3015876941C81063470 @default.
- W3015876941 hasLocation W30158769411 @default.