Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015892199> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3015892199 endingPage "170201" @default.
- W3015892199 startingPage "170201" @default.
- W3015892199 abstract "Nickel-based superalloy is mainly used for fabricating the important high temperature parts including the turbine disk, turbine baffle, compressor disk, and other critical components. Ceramic inclusions in powder metallurgy (PM) superalloy could promote fatigue crack initiation, and thus accelerating the crack propagation under certain conditions. In this case, the ultra-clean nickel-based superalloy powder is critical for PM superalloy components. Generally, there are two well-known methods of fabricating superalloy powders, i.e., argon gas atomization (AA) and plasma rotating electrode process (PREP). Electrode induction melting gas atomization (EIGA) process is a newly developed method of preparing ultra-clean metal powders. The EIGA process is a completely crucible-free melting and atomization process developed by ALD vacuum technologies. In this process, a slowly rotating prealloyed bar is fed into a conical induction coil. The end of the bar is inductively heated and molten alloys falls into an atomizer where the liquid alloy is atomized with a high-pressure inert gas. The EIGA prepared powders possess the advantages of AA (more fine powders) and PREP (ultra-clean powders) processes. Generally, there are two key issues in EIGA process, and the free-fall gas atomizer design is one of the critical issues for the powder yield and quality. Free-fall gas atomizers are some of the first two fluid atomizer designs to be used for molten metal atomization. In a simple open (unconfined stream) design a melt stream falls from a tundish exit via gravity into the convergence of focused atomization gas jets where it is disintegrated. The gas-melt interaction is complex, and it is difficult to characterize the interaction process directly. To have a good understanding of the atomisation technology, the physical break-up process instead of correlating the gas dynamics with droplet fragmentation indirectly must be able to be examined. And it will be desirable, if we input the atomization parameters, we can obtain the particles' distributions directly. In this work, a computational fluid dynamic approach to simulating the primary and secondary atomization processes is developed by using the volume of fluid method and discrete phase model. By integrating the metal stream break-up (in primary atomization) with the flow field and particles distribution simulation (in second atomization), this numerical simulation method is able to provide the direct assessment for the atomisation process. To verify the method performance, the melt stream is initialized into a 4 mm-diameter stream, which is then injected into the gas flow field for further fragmentation. The experimental results show that the simulated particles' diameter distribution is consistent with the experimental results in the same conditions." @default.
- W3015892199 created "2020-04-17" @default.
- W3015892199 creator A5002869117 @default.
- W3015892199 creator A5005354294 @default.
- W3015892199 creator A5026498644 @default.
- W3015892199 creator A5086042500 @default.
- W3015892199 date "2018-01-01" @default.
- W3015892199 modified "2023-10-01" @default.
- W3015892199 title "Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process" @default.
- W3015892199 cites W1983719017 @default.
- W3015892199 cites W1984601551 @default.
- W3015892199 cites W1991830741 @default.
- W3015892199 cites W1991883963 @default.
- W3015892199 cites W2005007435 @default.
- W3015892199 cites W2006918580 @default.
- W3015892199 cites W2025169560 @default.
- W3015892199 cites W2027794436 @default.
- W3015892199 cites W2039535821 @default.
- W3015892199 cites W2046075515 @default.
- W3015892199 cites W2050706223 @default.
- W3015892199 cites W2062987132 @default.
- W3015892199 cites W2065899753 @default.
- W3015892199 cites W2078866962 @default.
- W3015892199 cites W2138494040 @default.
- W3015892199 cites W2189050646 @default.
- W3015892199 cites W2189275913 @default.
- W3015892199 cites W2214253614 @default.
- W3015892199 cites W2265793743 @default.
- W3015892199 cites W2504559144 @default.
- W3015892199 cites W2516479181 @default.
- W3015892199 cites W2575604125 @default.
- W3015892199 cites W2621920192 @default.
- W3015892199 cites W2626569518 @default.
- W3015892199 cites W4210952908 @default.
- W3015892199 doi "https://doi.org/10.7498/aps.67.20180584" @default.
- W3015892199 hasPublicationYear "2018" @default.
- W3015892199 type Work @default.
- W3015892199 sameAs 3015892199 @default.
- W3015892199 citedByCount "9" @default.
- W3015892199 countsByYear W30158921992019 @default.
- W3015892199 countsByYear W30158921992020 @default.
- W3015892199 countsByYear W30158921992021 @default.
- W3015892199 countsByYear W30158921992022 @default.
- W3015892199 countsByYear W30158921992023 @default.
- W3015892199 crossrefType "journal-article" @default.
- W3015892199 hasAuthorship W3015892199A5002869117 @default.
- W3015892199 hasAuthorship W3015892199A5005354294 @default.
- W3015892199 hasAuthorship W3015892199A5026498644 @default.
- W3015892199 hasAuthorship W3015892199A5086042500 @default.
- W3015892199 hasBestOaLocation W30158921991 @default.
- W3015892199 hasConcept C102998134 @default.
- W3015892199 hasConcept C119599485 @default.
- W3015892199 hasConcept C120500152 @default.
- W3015892199 hasConcept C127413603 @default.
- W3015892199 hasConcept C147597530 @default.
- W3015892199 hasConcept C159985019 @default.
- W3015892199 hasConcept C185592680 @default.
- W3015892199 hasConcept C191897082 @default.
- W3015892199 hasConcept C192562407 @default.
- W3015892199 hasConcept C207055975 @default.
- W3015892199 hasConcept C2780026712 @default.
- W3015892199 hasConcept C30403606 @default.
- W3015892199 hasConcept C55766333 @default.
- W3015892199 hasConceptScore W3015892199C102998134 @default.
- W3015892199 hasConceptScore W3015892199C119599485 @default.
- W3015892199 hasConceptScore W3015892199C120500152 @default.
- W3015892199 hasConceptScore W3015892199C127413603 @default.
- W3015892199 hasConceptScore W3015892199C147597530 @default.
- W3015892199 hasConceptScore W3015892199C159985019 @default.
- W3015892199 hasConceptScore W3015892199C185592680 @default.
- W3015892199 hasConceptScore W3015892199C191897082 @default.
- W3015892199 hasConceptScore W3015892199C192562407 @default.
- W3015892199 hasConceptScore W3015892199C207055975 @default.
- W3015892199 hasConceptScore W3015892199C2780026712 @default.
- W3015892199 hasConceptScore W3015892199C30403606 @default.
- W3015892199 hasConceptScore W3015892199C55766333 @default.
- W3015892199 hasIssue "17" @default.
- W3015892199 hasLocation W30158921991 @default.
- W3015892199 hasOpenAccess W3015892199 @default.
- W3015892199 hasPrimaryLocation W30158921991 @default.
- W3015892199 hasRelatedWork W127840350 @default.
- W3015892199 hasRelatedWork W1972198911 @default.
- W3015892199 hasRelatedWork W2374353432 @default.
- W3015892199 hasRelatedWork W2382230551 @default.
- W3015892199 hasRelatedWork W2489113333 @default.
- W3015892199 hasRelatedWork W2511180361 @default.
- W3015892199 hasRelatedWork W2621920192 @default.
- W3015892199 hasRelatedWork W2959042971 @default.
- W3015892199 hasRelatedWork W4250486179 @default.
- W3015892199 hasRelatedWork W4311887600 @default.
- W3015892199 hasVolume "67" @default.
- W3015892199 isParatext "false" @default.
- W3015892199 isRetracted "false" @default.
- W3015892199 magId "3015892199" @default.
- W3015892199 workType "article" @default.