Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015900272> ?p ?o ?g. }
- W3015900272 endingPage "604" @default.
- W3015900272 startingPage "604" @default.
- W3015900272 abstract "Climate change has increased the probability of the occurrence of catastrophes like wildfires, floods, and storms across the globe in recent years. Weather conditions continue to grow more extreme, and wildfires are occurring quite frequently and are spreading with greater intensity. Wildfires ravage forest areas, as recently seen in the Amazon, the United States, and more recently in Australia. The availability of remotely sensed data has vastly improved, and enables us to precisely locate wildfires for monitoring purposes. Wildfire inventory data was created by integrating the polygons collected through field surveys using global positioning systems (GPS) and the data collected from the moderate resolution imaging spectrometer (MODIS) thermal anomalies product between 2012 and 2017 for the study area. The inventory data, along with sixteen conditioning factors selected for the study area, was used to appraise the potential of various machine learning (ML) methods for wildfire susceptibility mapping in Amol County. The ML methods chosen for this study are artificial neural network (ANN), dmine regression (DR), DM neural, least angle regression (LARS), multi-layer perceptron (MLP), random forest (RF), radial basis function (RBF), self-organizing maps (SOM), support vector machine (SVM), and decision tree (DT), along with the statistical approach of logistic regression (LR), which is very apt for wildfire susceptibility studies. The wildfire inventory data was categorized as three-fold, with 66% being used for training the models and 33% being used for accuracy assessment within three-fold cross-validation (CV). Receiver operating characteristics (ROC) was used to assess the accuracy of the ML approaches. RF had the highest accuracy of 88%, followed by SVM with an accuracy of almost 79%, and LR had the lowest accuracy of 65%. This shows that RF is better suited for wildfire susceptibility assessments in our case study area." @default.
- W3015900272 created "2020-04-17" @default.
- W3015900272 creator A5010457221 @default.
- W3015900272 creator A5049734142 @default.
- W3015900272 creator A5056842687 @default.
- W3015900272 creator A5089503857 @default.
- W3015900272 date "2020-04-10" @default.
- W3015900272 modified "2023-09-30" @default.
- W3015900272 title "Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping" @default.
- W3015900272 cites W1430220953 @default.
- W3015900272 cites W1520585040 @default.
- W3015900272 cites W1942836393 @default.
- W3015900272 cites W1967902943 @default.
- W3015900272 cites W1970580850 @default.
- W3015900272 cites W1970972394 @default.
- W3015900272 cites W1974614011 @default.
- W3015900272 cites W1977377474 @default.
- W3015900272 cites W1978784463 @default.
- W3015900272 cites W1985288162 @default.
- W3015900272 cites W1990748933 @default.
- W3015900272 cites W1993934953 @default.
- W3015900272 cites W1994214164 @default.
- W3015900272 cites W2002620848 @default.
- W3015900272 cites W2012118327 @default.
- W3015900272 cites W2036063587 @default.
- W3015900272 cites W2057039778 @default.
- W3015900272 cites W2065642067 @default.
- W3015900272 cites W2090454671 @default.
- W3015900272 cites W2112315008 @default.
- W3015900272 cites W2120630093 @default.
- W3015900272 cites W2130269771 @default.
- W3015900272 cites W2148470216 @default.
- W3015900272 cites W2151207589 @default.
- W3015900272 cites W2225976211 @default.
- W3015900272 cites W2556989296 @default.
- W3015900272 cites W2580219088 @default.
- W3015900272 cites W2582623062 @default.
- W3015900272 cites W2640557513 @default.
- W3015900272 cites W2754716656 @default.
- W3015900272 cites W2775745878 @default.
- W3015900272 cites W2793532906 @default.
- W3015900272 cites W2888067248 @default.
- W3015900272 cites W2888231268 @default.
- W3015900272 cites W2892289985 @default.
- W3015900272 cites W2894859748 @default.
- W3015900272 cites W2896949512 @default.
- W3015900272 cites W2907066318 @default.
- W3015900272 cites W2912361013 @default.
- W3015900272 cites W2913649977 @default.
- W3015900272 cites W2914068061 @default.
- W3015900272 cites W2953423956 @default.
- W3015900272 cites W2954992390 @default.
- W3015900272 cites W2963019697 @default.
- W3015900272 cites W2964406534 @default.
- W3015900272 cites W2972175198 @default.
- W3015900272 cites W2973710071 @default.
- W3015900272 cites W2984248680 @default.
- W3015900272 cites W2984594085 @default.
- W3015900272 cites W2995742865 @default.
- W3015900272 cites W2998709485 @default.
- W3015900272 cites W3001555788 @default.
- W3015900272 cites W3004334875 @default.
- W3015900272 doi "https://doi.org/10.3390/sym12040604" @default.
- W3015900272 hasPublicationYear "2020" @default.
- W3015900272 type Work @default.
- W3015900272 sameAs 3015900272 @default.
- W3015900272 citedByCount "67" @default.
- W3015900272 countsByYear W30159002722020 @default.
- W3015900272 countsByYear W30159002722021 @default.
- W3015900272 countsByYear W30159002722022 @default.
- W3015900272 countsByYear W30159002722023 @default.
- W3015900272 crossrefType "journal-article" @default.
- W3015900272 hasAuthorship W3015900272A5010457221 @default.
- W3015900272 hasAuthorship W3015900272A5049734142 @default.
- W3015900272 hasAuthorship W3015900272A5056842687 @default.
- W3015900272 hasAuthorship W3015900272A5089503857 @default.
- W3015900272 hasBestOaLocation W30159002721 @default.
- W3015900272 hasConcept C119857082 @default.
- W3015900272 hasConcept C12267149 @default.
- W3015900272 hasConcept C153294291 @default.
- W3015900272 hasConcept C154945302 @default.
- W3015900272 hasConcept C169258074 @default.
- W3015900272 hasConcept C179717631 @default.
- W3015900272 hasConcept C205649164 @default.
- W3015900272 hasConcept C39432304 @default.
- W3015900272 hasConcept C41008148 @default.
- W3015900272 hasConcept C50644808 @default.
- W3015900272 hasConcept C60908668 @default.
- W3015900272 hasConcept C62649853 @default.
- W3015900272 hasConcept C84525736 @default.
- W3015900272 hasConceptScore W3015900272C119857082 @default.
- W3015900272 hasConceptScore W3015900272C12267149 @default.
- W3015900272 hasConceptScore W3015900272C153294291 @default.
- W3015900272 hasConceptScore W3015900272C154945302 @default.
- W3015900272 hasConceptScore W3015900272C169258074 @default.
- W3015900272 hasConceptScore W3015900272C179717631 @default.
- W3015900272 hasConceptScore W3015900272C205649164 @default.
- W3015900272 hasConceptScore W3015900272C39432304 @default.