Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015913963> ?p ?o ?g. }
- W3015913963 endingPage "4361" @default.
- W3015913963 startingPage "4351" @default.
- W3015913963 abstract "In the past years, deep learning-based machinery fault diagnosis methods have been successfully developed, and the basic diagnostic problems have been well addressed where the training and testing data are collected under the same operating conditions. When the training and testing data are from different distributions, domain adaptation approaches have been introduced. However, the existing methods generally assume the availability of the target-domain data in all the health conditions during training, which is not in accordance with the real industrial scenarios. This article proposes a deep learning-based fault diagnosis method to address the partial domain adaptation problems, where the unsupervised target-domain training data do not cover the full machine health state label space. The conditional data alignment and unsupervised prediction consistency schemes are proposed to achieve partial domain adaptation. The experimental results on two rotating machinery datasets suggest the proposed method offers a promising tool for this practical industrial problem." @default.
- W3015913963 created "2020-04-17" @default.
- W3015913963 creator A5015815806 @default.
- W3015913963 creator A5051573610 @default.
- W3015913963 date "2021-05-01" @default.
- W3015913963 modified "2023-10-17" @default.
- W3015913963 title "Deep Learning-Based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics" @default.
- W3015913963 cites W2002106843 @default.
- W3015913963 cites W243674440 @default.
- W3015913963 cites W2480364715 @default.
- W3015913963 cites W2556013418 @default.
- W3015913963 cites W2581853886 @default.
- W3015913963 cites W2590288147 @default.
- W3015913963 cites W2593768305 @default.
- W3015913963 cites W2756073160 @default.
- W3015913963 cites W2763583057 @default.
- W3015913963 cites W2794869810 @default.
- W3015913963 cites W2798658180 @default.
- W3015913963 cites W2803884688 @default.
- W3015913963 cites W2811058982 @default.
- W3015913963 cites W2884552531 @default.
- W3015913963 cites W2887782657 @default.
- W3015913963 cites W2891319189 @default.
- W3015913963 cites W2898375427 @default.
- W3015913963 cites W2901389242 @default.
- W3015913963 cites W2906578288 @default.
- W3015913963 cites W2907541186 @default.
- W3015913963 cites W2912073957 @default.
- W3015913963 cites W2913409408 @default.
- W3015913963 cites W2922660557 @default.
- W3015913963 cites W2927893014 @default.
- W3015913963 cites W2940935128 @default.
- W3015913963 cites W2946048316 @default.
- W3015913963 cites W2957568672 @default.
- W3015913963 cites W2962986791 @default.
- W3015913963 cites W2964109570 @default.
- W3015913963 cites W2969372261 @default.
- W3015913963 cites W2971654674 @default.
- W3015913963 cites W2972401736 @default.
- W3015913963 cites W2981982720 @default.
- W3015913963 cites W2995758361 @default.
- W3015913963 cites W620261401 @default.
- W3015913963 doi "https://doi.org/10.1109/tie.2020.2984968" @default.
- W3015913963 hasPublicationYear "2021" @default.
- W3015913963 type Work @default.
- W3015913963 sameAs 3015913963 @default.
- W3015913963 citedByCount "102" @default.
- W3015913963 countsByYear W30159139632020 @default.
- W3015913963 countsByYear W30159139632021 @default.
- W3015913963 countsByYear W30159139632022 @default.
- W3015913963 countsByYear W30159139632023 @default.
- W3015913963 crossrefType "journal-article" @default.
- W3015913963 hasAuthorship W3015913963A5015815806 @default.
- W3015913963 hasAuthorship W3015913963A5051573610 @default.
- W3015913963 hasConcept C108583219 @default.
- W3015913963 hasConcept C127313418 @default.
- W3015913963 hasConcept C134306372 @default.
- W3015913963 hasConcept C139807058 @default.
- W3015913963 hasConcept C154945302 @default.
- W3015913963 hasConcept C165205528 @default.
- W3015913963 hasConcept C169760540 @default.
- W3015913963 hasConcept C175551986 @default.
- W3015913963 hasConcept C2776434776 @default.
- W3015913963 hasConcept C33923547 @default.
- W3015913963 hasConcept C36503486 @default.
- W3015913963 hasConcept C41008148 @default.
- W3015913963 hasConcept C86803240 @default.
- W3015913963 hasConcept C95623464 @default.
- W3015913963 hasConceptScore W3015913963C108583219 @default.
- W3015913963 hasConceptScore W3015913963C127313418 @default.
- W3015913963 hasConceptScore W3015913963C134306372 @default.
- W3015913963 hasConceptScore W3015913963C139807058 @default.
- W3015913963 hasConceptScore W3015913963C154945302 @default.
- W3015913963 hasConceptScore W3015913963C165205528 @default.
- W3015913963 hasConceptScore W3015913963C169760540 @default.
- W3015913963 hasConceptScore W3015913963C175551986 @default.
- W3015913963 hasConceptScore W3015913963C2776434776 @default.
- W3015913963 hasConceptScore W3015913963C33923547 @default.
- W3015913963 hasConceptScore W3015913963C36503486 @default.
- W3015913963 hasConceptScore W3015913963C41008148 @default.
- W3015913963 hasConceptScore W3015913963C86803240 @default.
- W3015913963 hasConceptScore W3015913963C95623464 @default.
- W3015913963 hasFunder F4320321001 @default.
- W3015913963 hasFunder F4320322429 @default.
- W3015913963 hasFunder F4320335787 @default.
- W3015913963 hasIssue "5" @default.
- W3015913963 hasLocation W30159139631 @default.
- W3015913963 hasOpenAccess W3015913963 @default.
- W3015913963 hasPrimaryLocation W30159139631 @default.
- W3015913963 hasRelatedWork W1864954421 @default.
- W3015913963 hasRelatedWork W2152148513 @default.
- W3015913963 hasRelatedWork W2280198878 @default.
- W3015913963 hasRelatedWork W2783380393 @default.
- W3015913963 hasRelatedWork W2951876757 @default.
- W3015913963 hasRelatedWork W3012432583 @default.
- W3015913963 hasRelatedWork W3096565154 @default.
- W3015913963 hasRelatedWork W4281397339 @default.
- W3015913963 hasRelatedWork W4283450023 @default.