Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015918312> ?p ?o ?g. }
- W3015918312 endingPage "1222" @default.
- W3015918312 startingPage "1222" @default.
- W3015918312 abstract "Recent developments in the fields of geographical object-based image analysis (GEOBIA) and ensemble learning (EL) have led the way to the development of automated processing frameworks suitable to tackle large-scale problems. Mapping riverscape units has been recognized in fluvial remote sensing as an important concern for understanding the macrodynamics of a river system and, if applied at large scales, it can be a powerful tool for monitoring purposes. In this study, the potentiality of GEOBIA and EL algorithms were tested for the mapping of key riverscape units along the main European river network. The Copernicus VHR Image Mosaic and the EU Digital Elevation Model (EU-DEM)—both made available through the Copernicus Land Monitoring Service—were integrated within a hierarchical object-based architecture. In a first step, the most well-known EL techniques (bagging, boosting and voting) were tested for the automatic classification of water, sediment bars, riparian vegetation and other floodplain units. Random forest was found to be the best-to-use classifier, and therefore was used in a second phase to classify the entire object-based river network. Finally, an independent validation was performed taking into consideration the polygon area within the accuracy assessment, hence improving the efficiency of the classification accuracy of the GEOBIA-derived map, both globally and by geographical zone. As a result, we automatically processed almost 2 million square kilometers at a spatial resolution of 2.5 meters, producing a riverscape-units map with a global overall accuracy of 0.915, and with per-class F1 accuracies in the range 0.79–0.97. The obtained results may allow for future studies aimed at quantitative, objective and continuous monitoring of river evolutions and fluvial geomorphological processes at the scale of Europe." @default.
- W3015918312 created "2020-04-17" @default.
- W3015918312 creator A5013236986 @default.
- W3015918312 creator A5024789982 @default.
- W3015918312 creator A5029049423 @default.
- W3015918312 date "2020-04-10" @default.
- W3015918312 modified "2023-10-17" @default.
- W3015918312 title "Object-Based Ensemble Learning for Pan-European Riverscape Units Mapping Based on Copernicus VHR and EU-DEM Data Fusion" @default.
- W3015918312 cites W1616078761 @default.
- W3015918312 cites W1678356000 @default.
- W3015918312 cites W1966375248 @default.
- W3015918312 cites W1969566724 @default.
- W3015918312 cites W1974576157 @default.
- W3015918312 cites W1976043739 @default.
- W3015918312 cites W1980547211 @default.
- W3015918312 cites W1991129553 @default.
- W3015918312 cites W1993506271 @default.
- W3015918312 cites W2009235968 @default.
- W3015918312 cites W2009396719 @default.
- W3015918312 cites W2011221485 @default.
- W3015918312 cites W2056123185 @default.
- W3015918312 cites W2056132907 @default.
- W3015918312 cites W2061240006 @default.
- W3015918312 cites W2067885219 @default.
- W3015918312 cites W2067903065 @default.
- W3015918312 cites W2074569242 @default.
- W3015918312 cites W2084668217 @default.
- W3015918312 cites W2103079830 @default.
- W3015918312 cites W2114097642 @default.
- W3015918312 cites W2145862305 @default.
- W3015918312 cites W2155632266 @default.
- W3015918312 cites W2159675182 @default.
- W3015918312 cites W2161052342 @default.
- W3015918312 cites W2175159455 @default.
- W3015918312 cites W2188115011 @default.
- W3015918312 cites W2261059368 @default.
- W3015918312 cites W2278171753 @default.
- W3015918312 cites W2320574724 @default.
- W3015918312 cites W2549075933 @default.
- W3015918312 cites W2552224582 @default.
- W3015918312 cites W2594627875 @default.
- W3015918312 cites W2603392361 @default.
- W3015918312 cites W2648242067 @default.
- W3015918312 cites W2767953525 @default.
- W3015918312 cites W2770221842 @default.
- W3015918312 cites W2770654566 @default.
- W3015918312 cites W2782934949 @default.
- W3015918312 cites W2783096881 @default.
- W3015918312 cites W2784208206 @default.
- W3015918312 cites W2789266805 @default.
- W3015918312 cites W2792055700 @default.
- W3015918312 cites W2793509150 @default.
- W3015918312 cites W2886521177 @default.
- W3015918312 cites W2892177252 @default.
- W3015918312 cites W2939911426 @default.
- W3015918312 cites W2945044133 @default.
- W3015918312 cites W2956159545 @default.
- W3015918312 cites W2964287450 @default.
- W3015918312 cites W2969625665 @default.
- W3015918312 cites W2981664452 @default.
- W3015918312 cites W2994984469 @default.
- W3015918312 cites W3004732066 @default.
- W3015918312 cites W4212883601 @default.
- W3015918312 doi "https://doi.org/10.3390/rs12071222" @default.
- W3015918312 hasPublicationYear "2020" @default.
- W3015918312 type Work @default.
- W3015918312 sameAs 3015918312 @default.
- W3015918312 citedByCount "15" @default.
- W3015918312 countsByYear W30159183122020 @default.
- W3015918312 countsByYear W30159183122021 @default.
- W3015918312 countsByYear W30159183122022 @default.
- W3015918312 countsByYear W30159183122023 @default.
- W3015918312 crossrefType "journal-article" @default.
- W3015918312 hasAuthorship W3015918312A5013236986 @default.
- W3015918312 hasAuthorship W3015918312A5024789982 @default.
- W3015918312 hasAuthorship W3015918312A5029049423 @default.
- W3015918312 hasBestOaLocation W30159183121 @default.
- W3015918312 hasConcept C107445234 @default.
- W3015918312 hasConcept C114386696 @default.
- W3015918312 hasConcept C121332964 @default.
- W3015918312 hasConcept C127413603 @default.
- W3015918312 hasConcept C1276947 @default.
- W3015918312 hasConcept C147176958 @default.
- W3015918312 hasConcept C154945302 @default.
- W3015918312 hasConcept C173163844 @default.
- W3015918312 hasConcept C205649164 @default.
- W3015918312 hasConcept C2780648208 @default.
- W3015918312 hasConcept C41008148 @default.
- W3015918312 hasConcept C4792198 @default.
- W3015918312 hasConcept C58640448 @default.
- W3015918312 hasConcept C62649853 @default.
- W3015918312 hasConceptScore W3015918312C107445234 @default.
- W3015918312 hasConceptScore W3015918312C114386696 @default.
- W3015918312 hasConceptScore W3015918312C121332964 @default.
- W3015918312 hasConceptScore W3015918312C127413603 @default.
- W3015918312 hasConceptScore W3015918312C1276947 @default.
- W3015918312 hasConceptScore W3015918312C147176958 @default.
- W3015918312 hasConceptScore W3015918312C154945302 @default.