Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015932015> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3015932015 abstract "The diagnosis of heart failure can be difficult, even for heart failure specialists. Artificial Intelligence-Clinical Decision Support System (AI-CDSS) has the potential to assist physicians in heart failure diagnosis. The aim of this work was to evaluate the diagnostic accuracy of an AI-CDSS for heart failure. AI-CDSS for cardiology was developed with a hybrid (expert-driven and machine-learning-driven) approach of knowledge acquisition to evolve the knowledge base with heart failure diagnosis. A retrospective cohort of 1198 patients with and without heart failure was used for the development of AI-CDSS (training dataset, n = 600) and to test the performance (test dataset, n = 598). A prospective clinical pilot study of 97 patients with dyspnea was used to assess the diagnostic accuracy of AI-CDSS compared with that of non-heart failure specialists. The concordance rate between AI-CDSS and heart failure specialists was evaluated. In retrospective cohort, the concordance rate was 98.3% in the test dataset. The concordance rate for patients with heart failure with reduced ejection fraction, heart failure with mid-range ejection fraction, heart failure with preserved ejection fraction, and no heart failure was 100%, 100%, 99.6%, and 91.7%, respectively. In a prospective pilot study of 97 patients presenting with dyspnea to the outpatient clinic, 44% had heart failure. The concordance rate between AI-CDSS and heart failure specialists was 98%, whereas that between non-heart failure specialists and heart failure specialists was 76%. In conclusion, AI-CDSS showed a high diagnostic accuracy for heart failure. Therefore, AI-CDSS may be useful for the diagnosis of heart failure, especially when heart failure specialists are not available." @default.
- W3015932015 created "2020-04-17" @default.
- W3015932015 creator A5003862414 @default.
- W3015932015 creator A5016608182 @default.
- W3015932015 creator A5053119028 @default.
- W3015932015 creator A5070651548 @default.
- W3015932015 date "2020-04-08" @default.
- W3015932015 modified "2023-10-14" @default.
- W3015932015 title "Artificial intelligence for the diagnosis of heart failure" @default.
- W3015932015 cites W1964714332 @default.
- W3015932015 cites W1968181674 @default.
- W3015932015 cites W2019408656 @default.
- W3015932015 cites W2023603983 @default.
- W3015932015 cites W2033989169 @default.
- W3015932015 cites W2079075573 @default.
- W3015932015 cites W2116195622 @default.
- W3015932015 cites W2124624517 @default.
- W3015932015 cites W2129710988 @default.
- W3015932015 cites W2220144588 @default.
- W3015932015 cites W2413359610 @default.
- W3015932015 cites W2427094903 @default.
- W3015932015 cites W2582259802 @default.
- W3015932015 cites W2738809330 @default.
- W3015932015 cites W2748529467 @default.
- W3015932015 cites W2783063799 @default.
- W3015932015 cites W2807593075 @default.
- W3015932015 cites W2889242407 @default.
- W3015932015 cites W2899876413 @default.
- W3015932015 cites W4293860347 @default.
- W3015932015 doi "https://doi.org/10.1038/s41746-020-0261-3" @default.
- W3015932015 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7142093" @default.
- W3015932015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33597704" @default.
- W3015932015 hasPublicationYear "2020" @default.
- W3015932015 type Work @default.
- W3015932015 sameAs 3015932015 @default.
- W3015932015 citedByCount "43" @default.
- W3015932015 countsByYear W30159320152020 @default.
- W3015932015 countsByYear W30159320152021 @default.
- W3015932015 countsByYear W30159320152022 @default.
- W3015932015 countsByYear W30159320152023 @default.
- W3015932015 crossrefType "journal-article" @default.
- W3015932015 hasAuthorship W3015932015A5003862414 @default.
- W3015932015 hasAuthorship W3015932015A5016608182 @default.
- W3015932015 hasAuthorship W3015932015A5053119028 @default.
- W3015932015 hasAuthorship W3015932015A5070651548 @default.
- W3015932015 hasBestOaLocation W30159320151 @default.
- W3015932015 hasConcept C126322002 @default.
- W3015932015 hasConcept C160798450 @default.
- W3015932015 hasConcept C164705383 @default.
- W3015932015 hasConcept C167135981 @default.
- W3015932015 hasConcept C188816634 @default.
- W3015932015 hasConcept C2778198053 @default.
- W3015932015 hasConcept C71924100 @default.
- W3015932015 hasConcept C78085059 @default.
- W3015932015 hasConceptScore W3015932015C126322002 @default.
- W3015932015 hasConceptScore W3015932015C160798450 @default.
- W3015932015 hasConceptScore W3015932015C164705383 @default.
- W3015932015 hasConceptScore W3015932015C167135981 @default.
- W3015932015 hasConceptScore W3015932015C188816634 @default.
- W3015932015 hasConceptScore W3015932015C2778198053 @default.
- W3015932015 hasConceptScore W3015932015C71924100 @default.
- W3015932015 hasConceptScore W3015932015C78085059 @default.
- W3015932015 hasIssue "1" @default.
- W3015932015 hasLocation W30159320151 @default.
- W3015932015 hasLocation W30159320152 @default.
- W3015932015 hasLocation W30159320153 @default.
- W3015932015 hasLocation W30159320154 @default.
- W3015932015 hasOpenAccess W3015932015 @default.
- W3015932015 hasPrimaryLocation W30159320151 @default.
- W3015932015 hasRelatedWork W2051712573 @default.
- W3015932015 hasRelatedWork W2077083067 @default.
- W3015932015 hasRelatedWork W2091139515 @default.
- W3015932015 hasRelatedWork W2167036398 @default.
- W3015932015 hasRelatedWork W2355594703 @default.
- W3015932015 hasRelatedWork W2361407492 @default.
- W3015932015 hasRelatedWork W2538662566 @default.
- W3015932015 hasRelatedWork W2965474825 @default.
- W3015932015 hasRelatedWork W3033076790 @default.
- W3015932015 hasRelatedWork W4382048704 @default.
- W3015932015 hasVolume "3" @default.
- W3015932015 isParatext "false" @default.
- W3015932015 isRetracted "false" @default.
- W3015932015 magId "3015932015" @default.
- W3015932015 workType "article" @default.