Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016032008> ?p ?o ?g. }
- W3016032008 endingPage "68637" @default.
- W3016032008 startingPage "68623" @default.
- W3016032008 abstract "Motion blur is a quite tricky issue in object tracking community. In recent years, many trackers have been explored to address this issue without sensational performance. This paper proposes a novel correlation tracking framework with Recurrent Neural Network (RNN) deblurnet and proposal detection to handle motion blur and heavy occlusion in object tracking tasks. We take advantage of high efficient Kernelized Correlation Filter (KCF) tracker, a typical method that exploits the circulant structure and the kernel trick to enhance the performance, and furthermore incorporate two regression methods in it. We employ RNN as our baseline of deblurnet, and introduce residual block and ConvLSTM in our deblur network to improve the result of deblurring. In addition, we suggest an edge information based rectification system to overcome the challenge of target occlusion. Finally, we update the model adaptively in term of the feedback from high-confidence tracking results to avoid the model degradation. Extensive experimental results demonstrate our tracker outperforms several state-of-the-art trackers on the OTB-2015 and VOT-2016 datasets." @default.
- W3016032008 created "2020-04-17" @default.
- W3016032008 creator A5019242095 @default.
- W3016032008 creator A5039849505 @default.
- W3016032008 creator A5051736223 @default.
- W3016032008 creator A5062250669 @default.
- W3016032008 date "2020-01-01" @default.
- W3016032008 modified "2023-10-16" @default.
- W3016032008 title "Deep Deblurring Correlation Filter for Object Tracking" @default.
- W3016032008 cites W1457323852 @default.
- W3016032008 cites W1485009520 @default.
- W3016032008 cites W1598796236 @default.
- W3016032008 cites W161114242 @default.
- W3016032008 cites W1857884451 @default.
- W3016032008 cites W1987075379 @default.
- W3016032008 cites W2030108224 @default.
- W3016032008 cites W2036682493 @default.
- W3016032008 cites W2044986361 @default.
- W3016032008 cites W2064675550 @default.
- W3016032008 cites W2098535678 @default.
- W3016032008 cites W2103913786 @default.
- W3016032008 cites W2129587342 @default.
- W3016032008 cites W2158592639 @default.
- W3016032008 cites W2167307343 @default.
- W3016032008 cites W2187997753 @default.
- W3016032008 cites W2194775991 @default.
- W3016032008 cites W2214352687 @default.
- W3016032008 cites W2317058546 @default.
- W3016032008 cites W2319561215 @default.
- W3016032008 cites W233979554 @default.
- W3016032008 cites W2473868734 @default.
- W3016032008 cites W2474599091 @default.
- W3016032008 cites W2520477759 @default.
- W3016032008 cites W2560533888 @default.
- W3016032008 cites W2673818281 @default.
- W3016032008 cites W2740685955 @default.
- W3016032008 cites W2767030697 @default.
- W3016032008 cites W2799058067 @default.
- W3016032008 cites W2883519683 @default.
- W3016032008 cites W2895906665 @default.
- W3016032008 cites W2916780012 @default.
- W3016032008 cites W2955747520 @default.
- W3016032008 cites W2962864296 @default.
- W3016032008 cites W2963471260 @default.
- W3016032008 cites W2963534981 @default.
- W3016032008 cites W2963581151 @default.
- W3016032008 cites W2964069521 @default.
- W3016032008 cites W2964111344 @default.
- W3016032008 cites W2966759264 @default.
- W3016032008 cites W2979871210 @default.
- W3016032008 cites W7746136 @default.
- W3016032008 cites W818325216 @default.
- W3016032008 doi "https://doi.org/10.1109/access.2020.2986311" @default.
- W3016032008 hasPublicationYear "2020" @default.
- W3016032008 type Work @default.
- W3016032008 sameAs 3016032008 @default.
- W3016032008 citedByCount "5" @default.
- W3016032008 countsByYear W30160320082021 @default.
- W3016032008 countsByYear W30160320082022 @default.
- W3016032008 crossrefType "journal-article" @default.
- W3016032008 hasAuthorship W3016032008A5019242095 @default.
- W3016032008 hasAuthorship W3016032008A5039849505 @default.
- W3016032008 hasAuthorship W3016032008A5051736223 @default.
- W3016032008 hasAuthorship W3016032008A5062250669 @default.
- W3016032008 hasBestOaLocation W30160320081 @default.
- W3016032008 hasConcept C106430172 @default.
- W3016032008 hasConcept C115961682 @default.
- W3016032008 hasConcept C154945302 @default.
- W3016032008 hasConcept C15744967 @default.
- W3016032008 hasConcept C19417346 @default.
- W3016032008 hasConcept C202474056 @default.
- W3016032008 hasConcept C2775936607 @default.
- W3016032008 hasConcept C2777693668 @default.
- W3016032008 hasConcept C2781238097 @default.
- W3016032008 hasConcept C2988922011 @default.
- W3016032008 hasConcept C31972630 @default.
- W3016032008 hasConcept C41008148 @default.
- W3016032008 hasConcept C9417928 @default.
- W3016032008 hasConceptScore W3016032008C106430172 @default.
- W3016032008 hasConceptScore W3016032008C115961682 @default.
- W3016032008 hasConceptScore W3016032008C154945302 @default.
- W3016032008 hasConceptScore W3016032008C15744967 @default.
- W3016032008 hasConceptScore W3016032008C19417346 @default.
- W3016032008 hasConceptScore W3016032008C202474056 @default.
- W3016032008 hasConceptScore W3016032008C2775936607 @default.
- W3016032008 hasConceptScore W3016032008C2777693668 @default.
- W3016032008 hasConceptScore W3016032008C2781238097 @default.
- W3016032008 hasConceptScore W3016032008C2988922011 @default.
- W3016032008 hasConceptScore W3016032008C31972630 @default.
- W3016032008 hasConceptScore W3016032008C41008148 @default.
- W3016032008 hasConceptScore W3016032008C9417928 @default.
- W3016032008 hasFunder F4320321001 @default.
- W3016032008 hasLocation W30160320081 @default.
- W3016032008 hasOpenAccess W3016032008 @default.
- W3016032008 hasPrimaryLocation W30160320081 @default.
- W3016032008 hasRelatedWork W2040965325 @default.
- W3016032008 hasRelatedWork W2352586926 @default.
- W3016032008 hasRelatedWork W2385949326 @default.