Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016107658> ?p ?o ?g. }
- W3016107658 abstract "Discriminative models for source separation have recently been shown to produce impressive results. However, when operating on sources outside of the training set, these models can not perform as well and are cumbersome to update. Classical methods like Nonnegative Matrix Factorization (NMF) provide modular approaches to source separation that can be easily updated to adapt to new mixture scenarios. In this paper, we generalize NMF to develop end-to-end non-negative auto-encoders and demonstrate how they can be used for source separation. Our experiments indicate that these models deliver comparable separation performance to discriminative approaches, while retaining the modularity of NMF and the modeling flexibility of neural networks." @default.
- W3016107658 created "2020-04-17" @default.
- W3016107658 creator A5001842601 @default.
- W3016107658 creator A5016864112 @default.
- W3016107658 creator A5038903729 @default.
- W3016107658 date "2020-05-01" @default.
- W3016107658 modified "2023-09-25" @default.
- W3016107658 title "End-To-End Non-Negative Autoencoders for Sound Source Separation" @default.
- W3016107658 cites W1790748249 @default.
- W3016107658 cites W2039844283 @default.
- W3016107658 cites W2086381917 @default.
- W3016107658 cites W2104298926 @default.
- W3016107658 cites W2113990625 @default.
- W3016107658 cites W2114508388 @default.
- W3016107658 cites W2127851351 @default.
- W3016107658 cites W2150415460 @default.
- W3016107658 cites W2221409856 @default.
- W3016107658 cites W2519994964 @default.
- W3016107658 cites W2774707525 @default.
- W3016107658 cites W2894785362 @default.
- W3016107658 cites W2903316710 @default.
- W3016107658 cites W2911579794 @default.
- W3016107658 cites W2918656717 @default.
- W3016107658 cites W2920053118 @default.
- W3016107658 cites W2944338086 @default.
- W3016107658 cites W2952218014 @default.
- W3016107658 cites W2962701080 @default.
- W3016107658 cites W2962935966 @default.
- W3016107658 cites W2962970934 @default.
- W3016107658 cites W2963443859 @default.
- W3016107658 cites W2963906950 @default.
- W3016107658 cites W2964058413 @default.
- W3016107658 cites W3098606562 @default.
- W3016107658 doi "https://doi.org/10.1109/icassp40776.2020.9053588" @default.
- W3016107658 hasPublicationYear "2020" @default.
- W3016107658 type Work @default.
- W3016107658 sameAs 3016107658 @default.
- W3016107658 citedByCount "1" @default.
- W3016107658 countsByYear W30161076582021 @default.
- W3016107658 crossrefType "proceedings-article" @default.
- W3016107658 hasAuthorship W3016107658A5001842601 @default.
- W3016107658 hasAuthorship W3016107658A5016864112 @default.
- W3016107658 hasAuthorship W3016107658A5038903729 @default.
- W3016107658 hasBestOaLocation W30161076582 @default.
- W3016107658 hasConcept C101468663 @default.
- W3016107658 hasConcept C101738243 @default.
- W3016107658 hasConcept C105795698 @default.
- W3016107658 hasConcept C111919701 @default.
- W3016107658 hasConcept C118505674 @default.
- W3016107658 hasConcept C119857082 @default.
- W3016107658 hasConcept C121332964 @default.
- W3016107658 hasConcept C152671427 @default.
- W3016107658 hasConcept C153180895 @default.
- W3016107658 hasConcept C154945302 @default.
- W3016107658 hasConcept C158693339 @default.
- W3016107658 hasConcept C177264268 @default.
- W3016107658 hasConcept C199360897 @default.
- W3016107658 hasConcept C2776061190 @default.
- W3016107658 hasConcept C2776864781 @default.
- W3016107658 hasConcept C2779478453 @default.
- W3016107658 hasConcept C2780598303 @default.
- W3016107658 hasConcept C33923547 @default.
- W3016107658 hasConcept C41008148 @default.
- W3016107658 hasConcept C42355184 @default.
- W3016107658 hasConcept C50644808 @default.
- W3016107658 hasConcept C54355233 @default.
- W3016107658 hasConcept C62520636 @default.
- W3016107658 hasConcept C74296488 @default.
- W3016107658 hasConcept C86803240 @default.
- W3016107658 hasConcept C97931131 @default.
- W3016107658 hasConceptScore W3016107658C101468663 @default.
- W3016107658 hasConceptScore W3016107658C101738243 @default.
- W3016107658 hasConceptScore W3016107658C105795698 @default.
- W3016107658 hasConceptScore W3016107658C111919701 @default.
- W3016107658 hasConceptScore W3016107658C118505674 @default.
- W3016107658 hasConceptScore W3016107658C119857082 @default.
- W3016107658 hasConceptScore W3016107658C121332964 @default.
- W3016107658 hasConceptScore W3016107658C152671427 @default.
- W3016107658 hasConceptScore W3016107658C153180895 @default.
- W3016107658 hasConceptScore W3016107658C154945302 @default.
- W3016107658 hasConceptScore W3016107658C158693339 @default.
- W3016107658 hasConceptScore W3016107658C177264268 @default.
- W3016107658 hasConceptScore W3016107658C199360897 @default.
- W3016107658 hasConceptScore W3016107658C2776061190 @default.
- W3016107658 hasConceptScore W3016107658C2776864781 @default.
- W3016107658 hasConceptScore W3016107658C2779478453 @default.
- W3016107658 hasConceptScore W3016107658C2780598303 @default.
- W3016107658 hasConceptScore W3016107658C33923547 @default.
- W3016107658 hasConceptScore W3016107658C41008148 @default.
- W3016107658 hasConceptScore W3016107658C42355184 @default.
- W3016107658 hasConceptScore W3016107658C50644808 @default.
- W3016107658 hasConceptScore W3016107658C54355233 @default.
- W3016107658 hasConceptScore W3016107658C62520636 @default.
- W3016107658 hasConceptScore W3016107658C74296488 @default.
- W3016107658 hasConceptScore W3016107658C86803240 @default.
- W3016107658 hasConceptScore W3016107658C97931131 @default.
- W3016107658 hasLocation W30161076581 @default.
- W3016107658 hasLocation W30161076582 @default.
- W3016107658 hasOpenAccess W3016107658 @default.
- W3016107658 hasPrimaryLocation W30161076581 @default.