Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016122298> ?p ?o ?g. }
- W3016122298 endingPage "102296" @default.
- W3016122298 startingPage "102296" @default.
- W3016122298 abstract "Forensic DNA signal is notoriously challenging to interpret and requires the implementation of computational tools that support its interpretation. While data from high-copy, low-contributor samples result in electropherogram signal that is readily interpreted by probabilistic methods, electropherogram signal from forensic stains is often garnered from low-copy, high-contributor-number samples and is frequently obfuscated by allele sharing, allele drop-out, stutter and noise. Since forensic DNA profiles are too complicated to quantitatively assess by manual methods, continuous, probabilistic frameworks that draw inferences on the Number of Contributors (NOC) and compute the Likelihood Ratio (LR) given the prosecution’s and defense’s hypotheses have been developed. In the current paper, we validate a new version of the NOCIt inference platform that determines an A Posteriori Probability (APP) distribution of the number of contributors given an electropherogram. NOCIt is a continuous inference system that incorporates models of peak height (including degradation and differential degradation), forward and reverse stutter, noise and allelic drop-out while taking into account allele frequencies in a reference population. We established the algorithm’s performance by conducting tests on samples that were representative of types often encountered in practice. In total, we tested NOCIt’s performance on 815 degraded, UV-damaged, inhibited, differentially degraded, or uncompromised DNA mixture samples containing up to 5 contributors. We found that the model makes accurate, repeatable and reliable inferences about the NOCs and significantly outperformed methods that rely on signal filtering. By leveraging recent theoretical results of Slooten and Caliebe (FSI:G, 2018) that, under suitable assumptions, establish the NOC can be treated as a nuisance variable, we demonstrated that when NOCIt’s APP is used in conjunction with a downstream likelihood ratio (LR) inference system that employs the same probabilistic model, a full evaluation across multiple contributor numbers is rendered. This work, therefore, illustrates the power of modern probabilistic systems to report holistic and interpretable weights-of-evidence to the trier-of-fact without assigning a specified number of contributors or filtering signal." @default.
- W3016122298 created "2020-04-17" @default.
- W3016122298 creator A5023722931 @default.
- W3016122298 creator A5028772372 @default.
- W3016122298 creator A5036110818 @default.
- W3016122298 creator A5042235507 @default.
- W3016122298 creator A5061641831 @default.
- W3016122298 creator A5083438839 @default.
- W3016122298 date "2020-07-01" @default.
- W3016122298 modified "2023-10-16" @default.
- W3016122298 title "A large-scale validation of NOCIt’s a posteriori probability of the number of contributors and its integration into forensic interpretation pipelines" @default.
- W3016122298 cites W1589996840 @default.
- W3016122298 cites W1608150349 @default.
- W3016122298 cites W1959454865 @default.
- W3016122298 cites W1976180784 @default.
- W3016122298 cites W2014877745 @default.
- W3016122298 cites W2030369315 @default.
- W3016122298 cites W2054873141 @default.
- W3016122298 cites W2058558205 @default.
- W3016122298 cites W2061422477 @default.
- W3016122298 cites W2097665124 @default.
- W3016122298 cites W2117899353 @default.
- W3016122298 cites W2118813357 @default.
- W3016122298 cites W2137043476 @default.
- W3016122298 cites W2142544283 @default.
- W3016122298 cites W2155856127 @default.
- W3016122298 cites W2157457573 @default.
- W3016122298 cites W2280665481 @default.
- W3016122298 cites W2517826875 @default.
- W3016122298 cites W2546931651 @default.
- W3016122298 cites W2553918854 @default.
- W3016122298 cites W2559472053 @default.
- W3016122298 cites W2560361858 @default.
- W3016122298 cites W2753276119 @default.
- W3016122298 cites W2765751881 @default.
- W3016122298 cites W2769784412 @default.
- W3016122298 cites W2783333911 @default.
- W3016122298 cites W2786484653 @default.
- W3016122298 cites W2794979865 @default.
- W3016122298 cites W2801587442 @default.
- W3016122298 cites W2885601841 @default.
- W3016122298 cites W2892123532 @default.
- W3016122298 cites W2912772549 @default.
- W3016122298 cites W2913106346 @default.
- W3016122298 cites W2989655623 @default.
- W3016122298 cites W3124699691 @default.
- W3016122298 doi "https://doi.org/10.1016/j.fsigen.2020.102296" @default.
- W3016122298 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32339916" @default.
- W3016122298 hasPublicationYear "2020" @default.
- W3016122298 type Work @default.
- W3016122298 sameAs 3016122298 @default.
- W3016122298 citedByCount "9" @default.
- W3016122298 countsByYear W30161222982020 @default.
- W3016122298 countsByYear W30161222982021 @default.
- W3016122298 countsByYear W30161222982022 @default.
- W3016122298 countsByYear W30161222982023 @default.
- W3016122298 crossrefType "journal-article" @default.
- W3016122298 hasAuthorship W3016122298A5023722931 @default.
- W3016122298 hasAuthorship W3016122298A5028772372 @default.
- W3016122298 hasAuthorship W3016122298A5036110818 @default.
- W3016122298 hasAuthorship W3016122298A5042235507 @default.
- W3016122298 hasAuthorship W3016122298A5061641831 @default.
- W3016122298 hasAuthorship W3016122298A5083438839 @default.
- W3016122298 hasBestOaLocation W30161222981 @default.
- W3016122298 hasConcept C107673813 @default.
- W3016122298 hasConcept C111472728 @default.
- W3016122298 hasConcept C11413529 @default.
- W3016122298 hasConcept C115961682 @default.
- W3016122298 hasConcept C124101348 @default.
- W3016122298 hasConcept C138885662 @default.
- W3016122298 hasConcept C144024400 @default.
- W3016122298 hasConcept C149923435 @default.
- W3016122298 hasConcept C154945302 @default.
- W3016122298 hasConcept C160234255 @default.
- W3016122298 hasConcept C162376815 @default.
- W3016122298 hasConcept C199360897 @default.
- W3016122298 hasConcept C2776214188 @default.
- W3016122298 hasConcept C2908647359 @default.
- W3016122298 hasConcept C40250595 @default.
- W3016122298 hasConcept C41008148 @default.
- W3016122298 hasConcept C43521106 @default.
- W3016122298 hasConcept C44995494 @default.
- W3016122298 hasConcept C49937458 @default.
- W3016122298 hasConcept C54355233 @default.
- W3016122298 hasConcept C75553542 @default.
- W3016122298 hasConcept C86803240 @default.
- W3016122298 hasConcept C99498987 @default.
- W3016122298 hasConceptScore W3016122298C107673813 @default.
- W3016122298 hasConceptScore W3016122298C111472728 @default.
- W3016122298 hasConceptScore W3016122298C11413529 @default.
- W3016122298 hasConceptScore W3016122298C115961682 @default.
- W3016122298 hasConceptScore W3016122298C124101348 @default.
- W3016122298 hasConceptScore W3016122298C138885662 @default.
- W3016122298 hasConceptScore W3016122298C144024400 @default.
- W3016122298 hasConceptScore W3016122298C149923435 @default.
- W3016122298 hasConceptScore W3016122298C154945302 @default.
- W3016122298 hasConceptScore W3016122298C160234255 @default.
- W3016122298 hasConceptScore W3016122298C162376815 @default.