Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016163669> ?p ?o ?g. }
- W3016163669 endingPage "3647" @default.
- W3016163669 startingPage "3632" @default.
- W3016163669 abstract "We present an approach for jointly matching and segmenting object instances of the same category within a collection of images. In contrast to existing algorithms that tackle the tasks of semantic matching and object co-segmentation in isolation, our method exploits the complementary nature of the two tasks. The key insights of our method are two-fold. First, the estimated dense correspondence fields from semantic matching provide supervision for object co-segmentation by enforcing consistency between the predicted masks from a pair of images. Second, the predicted object masks from object co-segmentation in turn allow us to reduce the adverse effects due to background clutters for improving semantic matching. Our model is end-to-end trainable and does not require supervision from manually annotated correspondences and object masks. We validate the efficacy of our approach on five benchmark datasets: TSS, Internet, PF-PASCAL, PF-WILLOW, and SPair-71k, and show that our algorithm performs favorably against the state-of-the-art methods on both semantic matching and object co-segmentation tasks." @default.
- W3016163669 created "2020-04-17" @default.
- W3016163669 creator A5002217153 @default.
- W3016163669 creator A5021175233 @default.
- W3016163669 creator A5053730462 @default.
- W3016163669 creator A5063179713 @default.
- W3016163669 date "2021-10-01" @default.
- W3016163669 modified "2023-10-17" @default.
- W3016163669 title "Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-Segmentation" @default.
- W3016163669 cites W1963920598 @default.
- W3016163669 cites W1984034752 @default.
- W3016163669 cites W1996140089 @default.
- W3016163669 cites W2002754212 @default.
- W3016163669 cites W2013640163 @default.
- W3016163669 cites W2015741635 @default.
- W3016163669 cites W2054279472 @default.
- W3016163669 cites W2086052791 @default.
- W3016163669 cites W2090518410 @default.
- W3016163669 cites W2097117768 @default.
- W3016163669 cites W2104853049 @default.
- W3016163669 cites W2110370288 @default.
- W3016163669 cites W2114542651 @default.
- W3016163669 cites W2116645175 @default.
- W3016163669 cites W2124386111 @default.
- W3016163669 cites W2124861766 @default.
- W3016163669 cites W2133059825 @default.
- W3016163669 cites W2134292164 @default.
- W3016163669 cites W2144502914 @default.
- W3016163669 cites W2154583877 @default.
- W3016163669 cites W2157244733 @default.
- W3016163669 cites W2161969291 @default.
- W3016163669 cites W2189538311 @default.
- W3016163669 cites W2194775991 @default.
- W3016163669 cites W2304841027 @default.
- W3016163669 cites W2412002662 @default.
- W3016163669 cites W2415053570 @default.
- W3016163669 cites W2464606141 @default.
- W3016163669 cites W2468480815 @default.
- W3016163669 cites W2474531669 @default.
- W3016163669 cites W2511737830 @default.
- W3016163669 cites W2593948489 @default.
- W3016163669 cites W2604231069 @default.
- W3016163669 cites W2604233003 @default.
- W3016163669 cites W2604881841 @default.
- W3016163669 cites W2609883120 @default.
- W3016163669 cites W2616689446 @default.
- W3016163669 cites W2736876108 @default.
- W3016163669 cites W2740660291 @default.
- W3016163669 cites W2747199123 @default.
- W3016163669 cites W2747550417 @default.
- W3016163669 cites W2750988638 @default.
- W3016163669 cites W2777318693 @default.
- W3016163669 cites W2793003838 @default.
- W3016163669 cites W2807912089 @default.
- W3016163669 cites W2886782161 @default.
- W3016163669 cites W2889658408 @default.
- W3016163669 cites W2890949887 @default.
- W3016163669 cites W2895136135 @default.
- W3016163669 cites W2898476649 @default.
- W3016163669 cites W2904829482 @default.
- W3016163669 cites W2916797271 @default.
- W3016163669 cites W2950111065 @default.
- W3016163669 cites W2952056941 @default.
- W3016163669 cites W2954275231 @default.
- W3016163669 cites W2962697512 @default.
- W3016163669 cites W2962793481 @default.
- W3016163669 cites W2962912205 @default.
- W3016163669 cites W2963020784 @default.
- W3016163669 cites W2963325280 @default.
- W3016163669 cites W2963430551 @default.
- W3016163669 cites W2963863119 @default.
- W3016163669 cites W2963890275 @default.
- W3016163669 cites W2964153986 @default.
- W3016163669 cites W2964188292 @default.
- W3016163669 cites W2964213755 @default.
- W3016163669 cites W2964700958 @default.
- W3016163669 cites W2965628639 @default.
- W3016163669 cites W2969088625 @default.
- W3016163669 cites W2985822417 @default.
- W3016163669 cites W3159890710 @default.
- W3016163669 cites W4205425515 @default.
- W3016163669 cites W4248635988 @default.
- W3016163669 cites W566255863 @default.
- W3016163669 cites W2519388566 @default.
- W3016163669 doi "https://doi.org/10.1109/tpami.2020.2985395" @default.
- W3016163669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32275584" @default.
- W3016163669 hasPublicationYear "2021" @default.
- W3016163669 type Work @default.
- W3016163669 sameAs 3016163669 @default.
- W3016163669 citedByCount "23" @default.
- W3016163669 countsByYear W30161636692020 @default.
- W3016163669 countsByYear W30161636692021 @default.
- W3016163669 countsByYear W30161636692022 @default.
- W3016163669 countsByYear W30161636692023 @default.
- W3016163669 crossrefType "journal-article" @default.
- W3016163669 hasAuthorship W3016163669A5002217153 @default.
- W3016163669 hasAuthorship W3016163669A5021175233 @default.
- W3016163669 hasAuthorship W3016163669A5053730462 @default.