Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016174571> ?p ?o ?g. }
- W3016174571 endingPage "612" @default.
- W3016174571 startingPage "612" @default.
- W3016174571 abstract "This article presents symmetry of sampling, scoring, scaling, filtering and suppression over deep convolutional neural networks in combination with a novel content-based image retrieval scheme to retrieve highly accurate results. For this, fusion of ResNet generated signatures is performed with the innovative image features. In the first step, symmetric sampling is performed on the images from the neighborhood key points. Thereafter, the rotated sampling patterns and pairwise comparisons are performed, which return image smoothing by applying standard deviation. These values of smoothed intensity are calculated as per local gradients. Box filtering adjusts the results of approximation of Gaussian with standard deviation to the lowest scale and suppressed by non-maximal technique. The resulting feature sets are scaled at various levels with parameterized smoothened images. The principal component analysis (PCA) reduced feature vectors are combined with the ResNet generated feature. Spatial color coordinates are integrated with convolutional neural network (CNN) extracted features to comprehensively represent the color channels. The proposed method is experimentally applied on challenging datasets including Cifar-100 (10), Cifar-10 (10), ALOT (250), Corel-10000 (10), Corel-1000 (10) and Fashion (15). The presented method shows remarkable results on texture datasets ALOT with 250 categories and fashion (15). The proposed method reports significant results on Cifar-10 and Cifar-100 benchmarks. Moreover, outstanding results are obtained for the Corel-1000 dataset in comparison with state-of-the-art methods." @default.
- W3016174571 created "2020-04-17" @default.
- W3016174571 creator A5018730493 @default.
- W3016174571 creator A5041353641 @default.
- W3016174571 creator A5070702816 @default.
- W3016174571 creator A5078898508 @default.
- W3016174571 creator A5080433957 @default.
- W3016174571 date "2020-04-13" @default.
- W3016174571 modified "2023-10-18" @default.
- W3016174571 title "Deep Learning Using Symmetry, FAST Scores, Shape-Based Filtering and Spatial Mapping Integrated with CNN for Large Scale Image Retrieval" @default.
- W3016174571 cites W1542828881 @default.
- W3016174571 cites W1938023627 @default.
- W3016174571 cites W1964374700 @default.
- W3016174571 cites W1973871483 @default.
- W3016174571 cites W1979075587 @default.
- W3016174571 cites W1993137812 @default.
- W3016174571 cites W2001121074 @default.
- W3016174571 cites W2023368606 @default.
- W3016174571 cites W2041152337 @default.
- W3016174571 cites W2042492924 @default.
- W3016174571 cites W2051007085 @default.
- W3016174571 cites W2085554865 @default.
- W3016174571 cites W2130660124 @default.
- W3016174571 cites W2136922672 @default.
- W3016174571 cites W2147069236 @default.
- W3016174571 cites W2147668280 @default.
- W3016174571 cites W2152773182 @default.
- W3016174571 cites W2160815625 @default.
- W3016174571 cites W2192598490 @default.
- W3016174571 cites W2253590344 @default.
- W3016174571 cites W2296096135 @default.
- W3016174571 cites W2409822643 @default.
- W3016174571 cites W2465327599 @default.
- W3016174571 cites W2518557480 @default.
- W3016174571 cites W2528333963 @default.
- W3016174571 cites W2560757589 @default.
- W3016174571 cites W2567001798 @default.
- W3016174571 cites W2592750780 @default.
- W3016174571 cites W2604669887 @default.
- W3016174571 cites W2607196597 @default.
- W3016174571 cites W2617803805 @default.
- W3016174571 cites W2618373950 @default.
- W3016174571 cites W2674270782 @default.
- W3016174571 cites W2770198335 @default.
- W3016174571 cites W2786671750 @default.
- W3016174571 cites W2941785734 @default.
- W3016174571 cites W2972363709 @default.
- W3016174571 cites W946771493 @default.
- W3016174571 doi "https://doi.org/10.3390/sym12040612" @default.
- W3016174571 hasPublicationYear "2020" @default.
- W3016174571 type Work @default.
- W3016174571 sameAs 3016174571 @default.
- W3016174571 citedByCount "16" @default.
- W3016174571 countsByYear W30161745712021 @default.
- W3016174571 countsByYear W30161745712022 @default.
- W3016174571 countsByYear W30161745712023 @default.
- W3016174571 crossrefType "journal-article" @default.
- W3016174571 hasAuthorship W3016174571A5018730493 @default.
- W3016174571 hasAuthorship W3016174571A5041353641 @default.
- W3016174571 hasAuthorship W3016174571A5070702816 @default.
- W3016174571 hasAuthorship W3016174571A5078898508 @default.
- W3016174571 hasAuthorship W3016174571A5080433957 @default.
- W3016174571 hasBestOaLocation W30161745711 @default.
- W3016174571 hasConcept C138885662 @default.
- W3016174571 hasConcept C153180895 @default.
- W3016174571 hasConcept C154945302 @default.
- W3016174571 hasConcept C2776401178 @default.
- W3016174571 hasConcept C31972630 @default.
- W3016174571 hasConcept C33923547 @default.
- W3016174571 hasConcept C3770464 @default.
- W3016174571 hasConcept C41008148 @default.
- W3016174571 hasConcept C41895202 @default.
- W3016174571 hasConcept C81363708 @default.
- W3016174571 hasConceptScore W3016174571C138885662 @default.
- W3016174571 hasConceptScore W3016174571C153180895 @default.
- W3016174571 hasConceptScore W3016174571C154945302 @default.
- W3016174571 hasConceptScore W3016174571C2776401178 @default.
- W3016174571 hasConceptScore W3016174571C31972630 @default.
- W3016174571 hasConceptScore W3016174571C33923547 @default.
- W3016174571 hasConceptScore W3016174571C3770464 @default.
- W3016174571 hasConceptScore W3016174571C41008148 @default.
- W3016174571 hasConceptScore W3016174571C41895202 @default.
- W3016174571 hasConceptScore W3016174571C81363708 @default.
- W3016174571 hasIssue "4" @default.
- W3016174571 hasLocation W30161745711 @default.
- W3016174571 hasLocation W30161745712 @default.
- W3016174571 hasLocation W30161745713 @default.
- W3016174571 hasOpenAccess W3016174571 @default.
- W3016174571 hasPrimaryLocation W30161745711 @default.
- W3016174571 hasRelatedWork W1504288058 @default.
- W3016174571 hasRelatedWork W2017205855 @default.
- W3016174571 hasRelatedWork W2036778696 @default.
- W3016174571 hasRelatedWork W2048505601 @default.
- W3016174571 hasRelatedWork W2167293474 @default.
- W3016174571 hasRelatedWork W2175746458 @default.
- W3016174571 hasRelatedWork W2331674254 @default.
- W3016174571 hasRelatedWork W2760085659 @default.
- W3016174571 hasRelatedWork W3042897387 @default.