Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016190553> ?p ?o ?g. }
- W3016190553 endingPage "1263" @default.
- W3016190553 startingPage "1257" @default.
- W3016190553 abstract "Abstract Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation. Methods The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI. Results A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group. Conclusion CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale." @default.
- W3016190553 created "2020-04-17" @default.
- W3016190553 creator A5000596614 @default.
- W3016190553 creator A5006461848 @default.
- W3016190553 creator A5011808458 @default.
- W3016190553 creator A5015034933 @default.
- W3016190553 creator A5015306775 @default.
- W3016190553 creator A5017896219 @default.
- W3016190553 creator A5024202101 @default.
- W3016190553 creator A5025870220 @default.
- W3016190553 creator A5033645848 @default.
- W3016190553 creator A5035094310 @default.
- W3016190553 creator A5035250882 @default.
- W3016190553 creator A5041219086 @default.
- W3016190553 creator A5059118981 @default.
- W3016190553 creator A5059597975 @default.
- W3016190553 creator A5064378373 @default.
- W3016190553 creator A5065166992 @default.
- W3016190553 creator A5076484725 @default.
- W3016190553 date "2020-04-13" @default.
- W3016190553 modified "2023-09-30" @default.
- W3016190553 title "Evaluating severity of white matter lesions from computed tomography images with convolutional neural network" @default.
- W3016190553 cites W1903029394 @default.
- W3016190553 cites W1983080368 @default.
- W3016190553 cites W2005533001 @default.
- W3016190553 cites W2026702673 @default.
- W3016190553 cites W2044097773 @default.
- W3016190553 cites W2091174464 @default.
- W3016190553 cites W2105976707 @default.
- W3016190553 cites W2123605592 @default.
- W3016190553 cites W2130047524 @default.
- W3016190553 cites W2131943911 @default.
- W3016190553 cites W2158142883 @default.
- W3016190553 cites W2158742097 @default.
- W3016190553 cites W2172142396 @default.
- W3016190553 cites W2301358467 @default.
- W3016190553 cites W2338681188 @default.
- W3016190553 cites W2437078189 @default.
- W3016190553 cites W2533800772 @default.
- W3016190553 cites W2592929672 @default.
- W3016190553 cites W2803411757 @default.
- W3016190553 cites W2921635256 @default.
- W3016190553 cites W2963076262 @default.
- W3016190553 cites W2984992886 @default.
- W3016190553 doi "https://doi.org/10.1007/s00234-020-02410-2" @default.
- W3016190553 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7478948" @default.
- W3016190553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32281028" @default.
- W3016190553 hasPublicationYear "2020" @default.
- W3016190553 type Work @default.
- W3016190553 sameAs 3016190553 @default.
- W3016190553 citedByCount "5" @default.
- W3016190553 countsByYear W30161905532021 @default.
- W3016190553 countsByYear W30161905532022 @default.
- W3016190553 countsByYear W30161905532023 @default.
- W3016190553 crossrefType "journal-article" @default.
- W3016190553 hasAuthorship W3016190553A5000596614 @default.
- W3016190553 hasAuthorship W3016190553A5006461848 @default.
- W3016190553 hasAuthorship W3016190553A5011808458 @default.
- W3016190553 hasAuthorship W3016190553A5015034933 @default.
- W3016190553 hasAuthorship W3016190553A5015306775 @default.
- W3016190553 hasAuthorship W3016190553A5017896219 @default.
- W3016190553 hasAuthorship W3016190553A5024202101 @default.
- W3016190553 hasAuthorship W3016190553A5025870220 @default.
- W3016190553 hasAuthorship W3016190553A5033645848 @default.
- W3016190553 hasAuthorship W3016190553A5035094310 @default.
- W3016190553 hasAuthorship W3016190553A5035250882 @default.
- W3016190553 hasAuthorship W3016190553A5041219086 @default.
- W3016190553 hasAuthorship W3016190553A5059118981 @default.
- W3016190553 hasAuthorship W3016190553A5059597975 @default.
- W3016190553 hasAuthorship W3016190553A5064378373 @default.
- W3016190553 hasAuthorship W3016190553A5065166992 @default.
- W3016190553 hasAuthorship W3016190553A5076484725 @default.
- W3016190553 hasBestOaLocation W30161905531 @default.
- W3016190553 hasConcept C101070640 @default.
- W3016190553 hasConcept C118552586 @default.
- W3016190553 hasConcept C126838900 @default.
- W3016190553 hasConcept C143409427 @default.
- W3016190553 hasConcept C146638467 @default.
- W3016190553 hasConcept C153180895 @default.
- W3016190553 hasConcept C154945302 @default.
- W3016190553 hasConcept C16568411 @default.
- W3016190553 hasConcept C2779889316 @default.
- W3016190553 hasConcept C2989005 @default.
- W3016190553 hasConcept C41008148 @default.
- W3016190553 hasConcept C71924100 @default.
- W3016190553 hasConcept C81363708 @default.
- W3016190553 hasConcept C89600930 @default.
- W3016190553 hasConceptScore W3016190553C101070640 @default.
- W3016190553 hasConceptScore W3016190553C118552586 @default.
- W3016190553 hasConceptScore W3016190553C126838900 @default.
- W3016190553 hasConceptScore W3016190553C143409427 @default.
- W3016190553 hasConceptScore W3016190553C146638467 @default.
- W3016190553 hasConceptScore W3016190553C153180895 @default.
- W3016190553 hasConceptScore W3016190553C154945302 @default.
- W3016190553 hasConceptScore W3016190553C16568411 @default.
- W3016190553 hasConceptScore W3016190553C2779889316 @default.
- W3016190553 hasConceptScore W3016190553C2989005 @default.
- W3016190553 hasConceptScore W3016190553C41008148 @default.