Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016208082> ?p ?o ?g. }
- W3016208082 abstract "Autonomous radar has been an integral part of advanced driver assistance systems due to its robustness to adverse weather and various lighting conditions. Conventional automotive radars use digital signal processing (DSP) algorithms to process raw data into sparse radar pins that do not provide information regarding the size and orientation of the objects. In this paper, we propose a deep-learning based algorithm for radar object detection. The algorithm takes in radar data in its raw tensor representation and places probabilistic oriented bounding boxes around the detected objects in bird's-eye-view space. We created a new multimodal dataset with 102544 frames of raw radar and synchronized LiDAR data. To reduce human annotation effort we developed a scalable pipeline to automatically annotate ground truth using LiDAR as reference. Based on this dataset we developed a vehicle detection pipeline using raw radar data as the only input. Our best performing radar detection model achieves 77.28% AP under oriented IoU of 0.3. To the best of our knowledge, this is the first attempt to investigate object detection with raw radar data for conventional corner automotive radars." @default.
- W3016208082 created "2020-04-17" @default.
- W3016208082 creator A5016851988 @default.
- W3016208082 creator A5059703957 @default.
- W3016208082 creator A5060360419 @default.
- W3016208082 creator A5076330540 @default.
- W3016208082 date "2020-04-11" @default.
- W3016208082 modified "2023-10-18" @default.
- W3016208082 title "Probabilistic Oriented Object Detection in Automotive Radar" @default.
- W3016208082 cites W2026718209 @default.
- W3016208082 cites W2030878855 @default.
- W3016208082 cites W2113638573 @default.
- W3016208082 cites W2128131274 @default.
- W3016208082 cites W2400138547 @default.
- W3016208082 cites W2407521645 @default.
- W3016208082 cites W2518108298 @default.
- W3016208082 cites W2518803647 @default.
- W3016208082 cites W2532240614 @default.
- W3016208082 cites W2560544142 @default.
- W3016208082 cites W2565639579 @default.
- W3016208082 cites W2600383743 @default.
- W3016208082 cites W2601564443 @default.
- W3016208082 cites W2613718673 @default.
- W3016208082 cites W2725486421 @default.
- W3016208082 cites W2784759481 @default.
- W3016208082 cites W2796347433 @default.
- W3016208082 cites W2798355657 @default.
- W3016208082 cites W2886335102 @default.
- W3016208082 cites W2888728082 @default.
- W3016208082 cites W2904648219 @default.
- W3016208082 cites W2914821954 @default.
- W3016208082 cites W2925148167 @default.
- W3016208082 cites W2949650786 @default.
- W3016208082 cites W2949708697 @default.
- W3016208082 cites W2951638509 @default.
- W3016208082 cites W2954174912 @default.
- W3016208082 cites W2962677013 @default.
- W3016208082 cites W2962749812 @default.
- W3016208082 cites W2963120444 @default.
- W3016208082 cites W2963351448 @default.
- W3016208082 cites W2963775509 @default.
- W3016208082 cites W2963927307 @default.
- W3016208082 cites W2964241181 @default.
- W3016208082 cites W2966926453 @default.
- W3016208082 cites W2971926293 @default.
- W3016208082 cites W2974922121 @default.
- W3016208082 cites W2979691948 @default.
- W3016208082 cites W2981958729 @default.
- W3016208082 cites W2986357608 @default.
- W3016208082 cites W2989604896 @default.
- W3016208082 cites W2995042771 @default.
- W3016208082 cites W3098452673 @default.
- W3016208082 cites W3106228955 @default.
- W3016208082 cites W3106250896 @default.
- W3016208082 doi "https://doi.org/10.48550/arxiv.2004.05310" @default.
- W3016208082 hasPublicationYear "2020" @default.
- W3016208082 type Work @default.
- W3016208082 sameAs 3016208082 @default.
- W3016208082 citedByCount "0" @default.
- W3016208082 crossrefType "posted-content" @default.
- W3016208082 hasAuthorship W3016208082A5016851988 @default.
- W3016208082 hasAuthorship W3016208082A5059703957 @default.
- W3016208082 hasAuthorship W3016208082A5060360419 @default.
- W3016208082 hasAuthorship W3016208082A5076330540 @default.
- W3016208082 hasBestOaLocation W30162080821 @default.
- W3016208082 hasConcept C104317684 @default.
- W3016208082 hasConcept C10929652 @default.
- W3016208082 hasConcept C132964779 @default.
- W3016208082 hasConcept C134406370 @default.
- W3016208082 hasConcept C153180895 @default.
- W3016208082 hasConcept C154945302 @default.
- W3016208082 hasConcept C161475128 @default.
- W3016208082 hasConcept C185565061 @default.
- W3016208082 hasConcept C185592680 @default.
- W3016208082 hasConcept C199360897 @default.
- W3016208082 hasConcept C205649164 @default.
- W3016208082 hasConcept C2776151529 @default.
- W3016208082 hasConcept C31972630 @default.
- W3016208082 hasConcept C41008148 @default.
- W3016208082 hasConcept C51399673 @default.
- W3016208082 hasConcept C554190296 @default.
- W3016208082 hasConcept C55493867 @default.
- W3016208082 hasConcept C62649853 @default.
- W3016208082 hasConcept C63479239 @default.
- W3016208082 hasConcept C76155785 @default.
- W3016208082 hasConceptScore W3016208082C104317684 @default.
- W3016208082 hasConceptScore W3016208082C10929652 @default.
- W3016208082 hasConceptScore W3016208082C132964779 @default.
- W3016208082 hasConceptScore W3016208082C134406370 @default.
- W3016208082 hasConceptScore W3016208082C153180895 @default.
- W3016208082 hasConceptScore W3016208082C154945302 @default.
- W3016208082 hasConceptScore W3016208082C161475128 @default.
- W3016208082 hasConceptScore W3016208082C185565061 @default.
- W3016208082 hasConceptScore W3016208082C185592680 @default.
- W3016208082 hasConceptScore W3016208082C199360897 @default.
- W3016208082 hasConceptScore W3016208082C205649164 @default.
- W3016208082 hasConceptScore W3016208082C2776151529 @default.
- W3016208082 hasConceptScore W3016208082C31972630 @default.
- W3016208082 hasConceptScore W3016208082C41008148 @default.
- W3016208082 hasConceptScore W3016208082C51399673 @default.