Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016224780> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3016224780 endingPage "14" @default.
- W3016224780 startingPage "5" @default.
- W3016224780 abstract "The paper focuses on financial data forecasting in terms of one-step-ahead nonlinear model with exogenous inputs. The main aim is the development of a methodology to forecast the exchange rate between EURO and US Dollar. The prediction task is carried out by two recurrent neural networks, the standard NARX neural network and a LSTM-based approach. The exogenous inputs consist of historical trading data and three widely used technical indicators, namely a variant of moving average, the Upper Bollinger Frequency Band and the Lower Bollinger Frequency Band. In order to obtain accurate forecasting algorithms, the exogenous inputs are filtered using the well-known Gaussian low-pass filter. The quality of each method is evaluated in terms of both quantitative and qualitative metrics, namely the root mean squared error, the mean absolute percentage error, and the prediction of change in direction. Extensive experiments point out that the most suited forecasting method is based on the proposed LSTM neural network for NARX model." @default.
- W3016224780 created "2020-04-17" @default.
- W3016224780 creator A5062473183 @default.
- W3016224780 creator A5071577190 @default.
- W3016224780 date "2020-03-30" @default.
- W3016224780 modified "2023-09-23" @default.
- W3016224780 title "The Use of LSTM Neural Networks to Implement the NARX Model. A Case Study of EUR-USD Exchange Rates" @default.
- W3016224780 cites W1689711448 @default.
- W3016224780 cites W1967429206 @default.
- W3016224780 cites W2114054266 @default.
- W3016224780 cites W2118049332 @default.
- W3016224780 cites W2253169361 @default.
- W3016224780 cites W2614459600 @default.
- W3016224780 cites W2757248671 @default.
- W3016224780 cites W2757471651 @default.
- W3016224780 cites W2769487452 @default.
- W3016224780 cites W2791525675 @default.
- W3016224780 cites W2796813311 @default.
- W3016224780 cites W2964413206 @default.
- W3016224780 cites W3146992587 @default.
- W3016224780 doi "https://doi.org/10.24818/issn14531305/24.1.2020.01" @default.
- W3016224780 hasPublicationYear "2020" @default.
- W3016224780 type Work @default.
- W3016224780 sameAs 3016224780 @default.
- W3016224780 citedByCount "2" @default.
- W3016224780 countsByYear W30162247802022 @default.
- W3016224780 crossrefType "journal-article" @default.
- W3016224780 hasAuthorship W3016224780A5062473183 @default.
- W3016224780 hasAuthorship W3016224780A5071577190 @default.
- W3016224780 hasBestOaLocation W30162247801 @default.
- W3016224780 hasConcept C105795698 @default.
- W3016224780 hasConcept C106131492 @default.
- W3016224780 hasConcept C11413529 @default.
- W3016224780 hasConcept C139945424 @default.
- W3016224780 hasConcept C149782125 @default.
- W3016224780 hasConcept C154945302 @default.
- W3016224780 hasConcept C159877910 @default.
- W3016224780 hasConcept C175706884 @default.
- W3016224780 hasConcept C31972630 @default.
- W3016224780 hasConcept C33923547 @default.
- W3016224780 hasConcept C41008148 @default.
- W3016224780 hasConcept C42536954 @default.
- W3016224780 hasConcept C50644808 @default.
- W3016224780 hasConceptScore W3016224780C105795698 @default.
- W3016224780 hasConceptScore W3016224780C106131492 @default.
- W3016224780 hasConceptScore W3016224780C11413529 @default.
- W3016224780 hasConceptScore W3016224780C139945424 @default.
- W3016224780 hasConceptScore W3016224780C149782125 @default.
- W3016224780 hasConceptScore W3016224780C154945302 @default.
- W3016224780 hasConceptScore W3016224780C159877910 @default.
- W3016224780 hasConceptScore W3016224780C175706884 @default.
- W3016224780 hasConceptScore W3016224780C31972630 @default.
- W3016224780 hasConceptScore W3016224780C33923547 @default.
- W3016224780 hasConceptScore W3016224780C41008148 @default.
- W3016224780 hasConceptScore W3016224780C42536954 @default.
- W3016224780 hasConceptScore W3016224780C50644808 @default.
- W3016224780 hasIssue "1/2020" @default.
- W3016224780 hasLocation W30162247801 @default.
- W3016224780 hasOpenAccess W3016224780 @default.
- W3016224780 hasPrimaryLocation W30162247801 @default.
- W3016224780 hasRelatedWork W2026948169 @default.
- W3016224780 hasRelatedWork W2085669162 @default.
- W3016224780 hasRelatedWork W2089574997 @default.
- W3016224780 hasRelatedWork W2177401844 @default.
- W3016224780 hasRelatedWork W2902707689 @default.
- W3016224780 hasRelatedWork W2990899954 @default.
- W3016224780 hasRelatedWork W3205607661 @default.
- W3016224780 hasRelatedWork W4225851526 @default.
- W3016224780 hasRelatedWork W4226325490 @default.
- W3016224780 hasRelatedWork W4253666091 @default.
- W3016224780 hasVolume "24" @default.
- W3016224780 isParatext "false" @default.
- W3016224780 isRetracted "false" @default.
- W3016224780 magId "3016224780" @default.
- W3016224780 workType "article" @default.