Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016284594> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3016284594 abstract "Complex statistical models utilizing multiple inputs to derive a risk assessment may benefit prostate cancer (PC) detection where focus has been on prostate-specific antigen (PSA). This study develops a polychotomous logistic regression (PR) model and an artificial neural network (ANN) for predicting biopsy results, particularly for clinically significant PC. There were 3,025 men undergoing TRUS-guided biopsy (BX) with PSA <10 ng/ml selected. BX outcome classified as benign, atypical small acinar proliferation or high-grade prostatic intraepithelial neoplasia (ASAP/PIN), non-significant (NSPC) or clinically significant PC (CSPC). PR and ANN models were developed to distinguish between BX categories. Predictors were age, PSA, abnormal digital rectal examination (DRE), positive transrectal ultrasound (TRUS) and prostate volume. Among the BXs, 44% were benign, 14% ASAP/PIN, 16% NSPC and 25% CSPC. Median age, PSA and volume were 64 years, 5.7 ng/ml and 50 cc. TRUS lesion was present in 47%, and DRE was abnormal in 39%. PR and ANN models did not differ on percentage BX outcomes correctly predicted (55, 57%, respectively) and were equally poor for both ASAP/PIN (0%) and NSPC (2%). For PR and ANN, 74–78% ASAP/PIN predicted benign, 2% NSPC and 20–24% CSPC. For NSPC, 69–71% predicted benign, 27–29% CSPC. Benign outcomes were well identified (86–88%), although 12–13% classified CSPC. CSPC was correctly identified in 65–66% with misclassifications largely benign (33% for PR and ANN). Neither PR nor ANN was able to distinguish between the four biopsy outcomes: ASAP/PIN and NSPC were not distinguished from benign or CSPC. ANN did not perform better than PR. Inclusion of additional predictors may increase the performance of statistical models in predicting BX outcome." @default.
- W3016284594 created "2020-04-24" @default.
- W3016284594 creator A5002629653 @default.
- W3016284594 creator A5007710281 @default.
- W3016284594 creator A5018446991 @default.
- W3016284594 creator A5028169952 @default.
- W3016284594 creator A5071033528 @default.
- W3016284594 creator A5080527709 @default.
- W3016284594 creator A5081221251 @default.
- W3016284594 date "2011-01-01" @default.
- W3016284594 modified "2023-09-23" @default.
- W3016284594 title "Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models" @default.
- W3016284594 hasPublicationYear "2011" @default.
- W3016284594 type Work @default.
- W3016284594 sameAs 3016284594 @default.
- W3016284594 citedByCount "0" @default.
- W3016284594 crossrefType "journal-article" @default.
- W3016284594 hasAuthorship W3016284594A5002629653 @default.
- W3016284594 hasAuthorship W3016284594A5007710281 @default.
- W3016284594 hasAuthorship W3016284594A5018446991 @default.
- W3016284594 hasAuthorship W3016284594A5028169952 @default.
- W3016284594 hasAuthorship W3016284594A5071033528 @default.
- W3016284594 hasAuthorship W3016284594A5080527709 @default.
- W3016284594 hasAuthorship W3016284594A5081221251 @default.
- W3016284594 hasConcept C121608353 @default.
- W3016284594 hasConcept C126322002 @default.
- W3016284594 hasConcept C126838900 @default.
- W3016284594 hasConcept C126894567 @default.
- W3016284594 hasConcept C143753070 @default.
- W3016284594 hasConcept C151956035 @default.
- W3016284594 hasConcept C2775934546 @default.
- W3016284594 hasConcept C2776235491 @default.
- W3016284594 hasConcept C2779534503 @default.
- W3016284594 hasConcept C2780101318 @default.
- W3016284594 hasConcept C2780192828 @default.
- W3016284594 hasConcept C2781217009 @default.
- W3016284594 hasConcept C2781406297 @default.
- W3016284594 hasConcept C71924100 @default.
- W3016284594 hasConceptScore W3016284594C121608353 @default.
- W3016284594 hasConceptScore W3016284594C126322002 @default.
- W3016284594 hasConceptScore W3016284594C126838900 @default.
- W3016284594 hasConceptScore W3016284594C126894567 @default.
- W3016284594 hasConceptScore W3016284594C143753070 @default.
- W3016284594 hasConceptScore W3016284594C151956035 @default.
- W3016284594 hasConceptScore W3016284594C2775934546 @default.
- W3016284594 hasConceptScore W3016284594C2776235491 @default.
- W3016284594 hasConceptScore W3016284594C2779534503 @default.
- W3016284594 hasConceptScore W3016284594C2780101318 @default.
- W3016284594 hasConceptScore W3016284594C2780192828 @default.
- W3016284594 hasConceptScore W3016284594C2781217009 @default.
- W3016284594 hasConceptScore W3016284594C2781406297 @default.
- W3016284594 hasConceptScore W3016284594C71924100 @default.
- W3016284594 hasIssue "1" @default.
- W3016284594 hasLocation W30162845941 @default.
- W3016284594 hasOpenAccess W3016284594 @default.
- W3016284594 hasPrimaryLocation W30162845941 @default.
- W3016284594 hasRelatedWork W1754387992 @default.
- W3016284594 hasRelatedWork W1970058094 @default.
- W3016284594 hasRelatedWork W1986216707 @default.
- W3016284594 hasRelatedWork W2025299655 @default.
- W3016284594 hasRelatedWork W2032147018 @default.
- W3016284594 hasRelatedWork W2033164636 @default.
- W3016284594 hasRelatedWork W2045529727 @default.
- W3016284594 hasRelatedWork W2062697543 @default.
- W3016284594 hasRelatedWork W2116805789 @default.
- W3016284594 hasRelatedWork W2145005516 @default.
- W3016284594 hasRelatedWork W2154804937 @default.
- W3016284594 hasRelatedWork W2159308359 @default.
- W3016284594 hasRelatedWork W2169983315 @default.
- W3016284594 hasRelatedWork W2247497982 @default.
- W3016284594 hasRelatedWork W2257307547 @default.
- W3016284594 hasRelatedWork W2401310424 @default.
- W3016284594 hasRelatedWork W2792262068 @default.
- W3016284594 hasRelatedWork W2948212001 @default.
- W3016284594 hasRelatedWork W1509121847 @default.
- W3016284594 hasRelatedWork W2779910861 @default.
- W3016284594 hasVolume "43" @default.
- W3016284594 isParatext "false" @default.
- W3016284594 isRetracted "false" @default.
- W3016284594 magId "3016284594" @default.
- W3016284594 workType "article" @default.