Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016291243> ?p ?o ?g. }
- W3016291243 endingPage "104498" @default.
- W3016291243 startingPage "104498" @default.
- W3016291243 abstract "Pollen grains are valuable paleoclimate and paleovegetation proxies which require extensive knowledge of morphotypes and long acquisition time under the microscope. The abundance of damaged, folded, and broken pollen grains in the fossil register and sometimes also in modern soil and sediment samples, has so far prevented automation of pollen identification. Recent improvements in machine learning, however, have allowed reconsidering this approach. Here we present an automated approach which is capable of assisting palynologists with poorly preserved pollen samples. Called multi-CNNs, this approach is based on multiple convolutional neural networks (CNNs) integrated in a decision tree system. To test it, we built a system designed for three botanical families very common in the modern and fossil pollen assemblages of Eastern Africa, namely Amaranthaceae, Poaceae, and Cyperaceae. Our system was tested on stacked optical images of 8 pollen types (6 Amaranthaceae, 1 Poaceae, 1 Cyperaceae) using a training dataset of 1102 intact pollen grains and three validation datasets of intact (276 grains), damaged (223 grains), and fossil pollen (97 grains). We show that our system successfully recognizes intact, damaged, and fossil pollen grains with very low misclassification rates of 0%, 2.8%, and 3.7%, respectively. The use of augmentation on stacked optical images during the training increases classification accuracy. Following a palynologist's approach, our system allows grains without obvious characters to be classified into a class of high taxonomic level or as indeterminable pollen. This is the first software able to process grains with a wide range of taphonomical stages, which makes it the first truly applicable to automated pollen identification of fossil material." @default.
- W3016291243 created "2020-04-24" @default.
- W3016291243 creator A5023470911 @default.
- W3016291243 creator A5041069138 @default.
- W3016291243 creator A5048020628 @default.
- W3016291243 creator A5063589211 @default.
- W3016291243 creator A5065407105 @default.
- W3016291243 creator A5080523296 @default.
- W3016291243 creator A5082741185 @default.
- W3016291243 date "2020-07-01" @default.
- W3016291243 modified "2023-10-18" @default.
- W3016291243 title "Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains" @default.
- W3016291243 cites W2005011886 @default.
- W3016291243 cites W2006006524 @default.
- W3016291243 cites W2007037557 @default.
- W3016291243 cites W2011301426 @default.
- W3016291243 cites W2017168872 @default.
- W3016291243 cites W2021007752 @default.
- W3016291243 cites W2022870104 @default.
- W3016291243 cites W2028163703 @default.
- W3016291243 cites W2031377957 @default.
- W3016291243 cites W2075192171 @default.
- W3016291243 cites W2080240398 @default.
- W3016291243 cites W2088944806 @default.
- W3016291243 cites W2103647691 @default.
- W3016291243 cites W2113022467 @default.
- W3016291243 cites W2114299439 @default.
- W3016291243 cites W2138797352 @default.
- W3016291243 cites W2167279371 @default.
- W3016291243 cites W2281161340 @default.
- W3016291243 cites W2322068366 @default.
- W3016291243 cites W2416777518 @default.
- W3016291243 cites W2516112824 @default.
- W3016291243 cites W2888623041 @default.
- W3016291243 cites W2890900069 @default.
- W3016291243 doi "https://doi.org/10.1016/j.cageo.2020.104498" @default.
- W3016291243 hasPublicationYear "2020" @default.
- W3016291243 type Work @default.
- W3016291243 sameAs 3016291243 @default.
- W3016291243 citedByCount "22" @default.
- W3016291243 countsByYear W30162912432020 @default.
- W3016291243 countsByYear W30162912432021 @default.
- W3016291243 countsByYear W30162912432022 @default.
- W3016291243 countsByYear W30162912432023 @default.
- W3016291243 crossrefType "journal-article" @default.
- W3016291243 hasAuthorship W3016291243A5023470911 @default.
- W3016291243 hasAuthorship W3016291243A5041069138 @default.
- W3016291243 hasAuthorship W3016291243A5048020628 @default.
- W3016291243 hasAuthorship W3016291243A5063589211 @default.
- W3016291243 hasAuthorship W3016291243A5065407105 @default.
- W3016291243 hasAuthorship W3016291243A5080523296 @default.
- W3016291243 hasAuthorship W3016291243A5082741185 @default.
- W3016291243 hasBestOaLocation W30162912431 @default.
- W3016291243 hasConcept C127313418 @default.
- W3016291243 hasConcept C151730666 @default.
- W3016291243 hasConcept C154945302 @default.
- W3016291243 hasConcept C162501224 @default.
- W3016291243 hasConcept C2778556696 @default.
- W3016291243 hasConcept C2779370140 @default.
- W3016291243 hasConcept C2780590819 @default.
- W3016291243 hasConcept C2780618852 @default.
- W3016291243 hasConcept C41008148 @default.
- W3016291243 hasConcept C46757340 @default.
- W3016291243 hasConcept C59822182 @default.
- W3016291243 hasConcept C81363708 @default.
- W3016291243 hasConcept C86803240 @default.
- W3016291243 hasConceptScore W3016291243C127313418 @default.
- W3016291243 hasConceptScore W3016291243C151730666 @default.
- W3016291243 hasConceptScore W3016291243C154945302 @default.
- W3016291243 hasConceptScore W3016291243C162501224 @default.
- W3016291243 hasConceptScore W3016291243C2778556696 @default.
- W3016291243 hasConceptScore W3016291243C2779370140 @default.
- W3016291243 hasConceptScore W3016291243C2780590819 @default.
- W3016291243 hasConceptScore W3016291243C2780618852 @default.
- W3016291243 hasConceptScore W3016291243C41008148 @default.
- W3016291243 hasConceptScore W3016291243C46757340 @default.
- W3016291243 hasConceptScore W3016291243C59822182 @default.
- W3016291243 hasConceptScore W3016291243C81363708 @default.
- W3016291243 hasConceptScore W3016291243C86803240 @default.
- W3016291243 hasFunder F4320309911 @default.
- W3016291243 hasFunder F4320333065 @default.
- W3016291243 hasFunder F4320334679 @default.
- W3016291243 hasFunder F4320334960 @default.
- W3016291243 hasFunder F4320338368 @default.
- W3016291243 hasLocation W30162912431 @default.
- W3016291243 hasLocation W30162912432 @default.
- W3016291243 hasLocation W30162912433 @default.
- W3016291243 hasLocation W30162912434 @default.
- W3016291243 hasLocation W30162912435 @default.
- W3016291243 hasLocation W30162912436 @default.
- W3016291243 hasOpenAccess W3016291243 @default.
- W3016291243 hasPrimaryLocation W30162912431 @default.
- W3016291243 hasRelatedWork W1949725684 @default.
- W3016291243 hasRelatedWork W1970263252 @default.
- W3016291243 hasRelatedWork W2030221327 @default.
- W3016291243 hasRelatedWork W2315826037 @default.
- W3016291243 hasRelatedWork W2348540494 @default.
- W3016291243 hasRelatedWork W2908607162 @default.