Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016310663> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3016310663 abstract "Forest type is very important in the management of the forest ecosystem. Previous literatures demonstrate that deep belief network (DBN) gain the excellent classification performance. This research attempts to classify the forest type from hyperspectral image using DBN. To begin with, the Restricted Boltzmann Machines and deep belief networks are briefly reviewed. Then, the effect of network depth and the number of hidden units on the accuracy and Kappa efficient is discussed. Furthermore, forest type is classified using DBN by Python language, comparing with typical classification methods, such as support vector machine (SVM). The experimental results show that the number of layers is 3 and the number of nodes is 256 are the optimal network structure for forest type identification. The overall accuracy is 85.8% and the coefficient is 0.785, which is better than the classification performance of support vector machine. In general, deep belief network has the potential to be the dominant method of forest mapping by hyperspectral image." @default.
- W3016310663 created "2020-04-24" @default.
- W3016310663 creator A5048755076 @default.
- W3016310663 creator A5072065857 @default.
- W3016310663 date "2019-12-01" @default.
- W3016310663 modified "2023-09-25" @default.
- W3016310663 title "Forest Mapping from Hyperspectral Image Using Deep Belief Network" @default.
- W3016310663 cites W2008509935 @default.
- W3016310663 cites W2020326148 @default.
- W3016310663 cites W2029316659 @default.
- W3016310663 cites W2039067795 @default.
- W3016310663 cites W2042723998 @default.
- W3016310663 cites W2090424610 @default.
- W3016310663 cites W2098057602 @default.
- W3016310663 cites W2099553813 @default.
- W3016310663 cites W2147858007 @default.
- W3016310663 cites W2169918931 @default.
- W3016310663 cites W2345286725 @default.
- W3016310663 cites W2616976651 @default.
- W3016310663 cites W2742622811 @default.
- W3016310663 doi "https://doi.org/10.1109/msn48538.2019.00081" @default.
- W3016310663 hasPublicationYear "2019" @default.
- W3016310663 type Work @default.
- W3016310663 sameAs 3016310663 @default.
- W3016310663 citedByCount "3" @default.
- W3016310663 countsByYear W30163106632020 @default.
- W3016310663 countsByYear W30163106632022 @default.
- W3016310663 crossrefType "proceedings-article" @default.
- W3016310663 hasAuthorship W3016310663A5048755076 @default.
- W3016310663 hasAuthorship W3016310663A5072065857 @default.
- W3016310663 hasConcept C115961682 @default.
- W3016310663 hasConcept C127313418 @default.
- W3016310663 hasConcept C154945302 @default.
- W3016310663 hasConcept C159078339 @default.
- W3016310663 hasConcept C31972630 @default.
- W3016310663 hasConcept C41008148 @default.
- W3016310663 hasConcept C62649853 @default.
- W3016310663 hasConceptScore W3016310663C115961682 @default.
- W3016310663 hasConceptScore W3016310663C127313418 @default.
- W3016310663 hasConceptScore W3016310663C154945302 @default.
- W3016310663 hasConceptScore W3016310663C159078339 @default.
- W3016310663 hasConceptScore W3016310663C31972630 @default.
- W3016310663 hasConceptScore W3016310663C41008148 @default.
- W3016310663 hasConceptScore W3016310663C62649853 @default.
- W3016310663 hasLocation W30163106631 @default.
- W3016310663 hasOpenAccess W3016310663 @default.
- W3016310663 hasPrimaryLocation W30163106631 @default.
- W3016310663 hasRelatedWork W1533292911 @default.
- W3016310663 hasRelatedWork W2005185696 @default.
- W3016310663 hasRelatedWork W2092957489 @default.
- W3016310663 hasRelatedWork W2130228941 @default.
- W3016310663 hasRelatedWork W2132132164 @default.
- W3016310663 hasRelatedWork W2161229648 @default.
- W3016310663 hasRelatedWork W2235753890 @default.
- W3016310663 hasRelatedWork W2737780766 @default.
- W3016310663 hasRelatedWork W2993674027 @default.
- W3016310663 hasRelatedWork W3123424645 @default.
- W3016310663 isParatext "false" @default.
- W3016310663 isRetracted "false" @default.
- W3016310663 magId "3016310663" @default.
- W3016310663 workType "article" @default.