Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016323452> ?p ?o ?g. }
- W3016323452 endingPage "58" @default.
- W3016323452 startingPage "47" @default.
- W3016323452 abstract "Surface electromyography (EMG) signals are inevitably contaminated by various noise components, including powerline interference (PLI), baseline wandering (BW), and white Gaussian noise (WGN). These noises directly degrade the efficiency of EMG processing and affect the accuracy and robustness of further applications. Currently, most of the EMG filters only target one category of noise. Here, we propose a novel filter to remove all three types of noise. The noisy EMG signal is first decomposed into an ensemble of band-limited modes using variational mode decomposition (VMD). Each category of noise is located within specific modes and is separately removed in sub-bands. In particular, WGN is suppressed by soft thresholding with a noise level-dependent threshold. The denoising performance was assessed from simulated and experimental signals using three performance metrics: the root mean square error ( $operatorname{RMSE}$ ), the improvement in signal-to-noise ratio ( $operatorname{SNR}_{text{imp}}$ ), and the percentage reduction in the correlation coefficient ( $eta$ ). Other methods, including traditional infinite impulse response (IIR) filters, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method, were examined for comparison. The proposed method achieved the best performance to remove BW or WGN. It also effectively reduced PLI noise when the signal-to-noise ratio (SNR) was low. The SNR was improved by 18.6, 19.2, and 8.0 dB for EMG signals corrupted with PLI, BW, and WGN at $-$ 6 dB SNR, respectively. The experimental results illustrated that noise was completely removed from resting states, and obvious spikes were distinguished from action states. For two of the ten subjects, the improved SNR reached 20 dB. This study explores the special characteristics of VMD and demonstrates the feasibility of using the VMD-based filter to denoise EMG signals. The proposed filter is efficient at removing three categories of noise and can be used for any application that requires EMG signal filtering at the preprocessing stage, such as gesture recognition and EMG decomposition." @default.
- W3016323452 created "2020-04-24" @default.
- W3016323452 creator A5026748241 @default.
- W3016323452 creator A5040002528 @default.
- W3016323452 creator A5062272467 @default.
- W3016323452 creator A5078125284 @default.
- W3016323452 creator A5078143614 @default.
- W3016323452 date "2021-01-01" @default.
- W3016323452 modified "2023-10-14" @default.
- W3016323452 title "EMG Signal Filtering Based on Variational Mode Decomposition and Sub-Band Thresholding" @default.
- W3016323452 cites W1804238228 @default.
- W3016323452 cites W1809394698 @default.
- W3016323452 cites W1962531538 @default.
- W3016323452 cites W1964919144 @default.
- W3016323452 cites W1974688913 @default.
- W3016323452 cites W2000982976 @default.
- W3016323452 cites W2001204559 @default.
- W3016323452 cites W2002499457 @default.
- W3016323452 cites W2007221293 @default.
- W3016323452 cites W2035381272 @default.
- W3016323452 cites W2073476715 @default.
- W3016323452 cites W2097092203 @default.
- W3016323452 cites W2103403570 @default.
- W3016323452 cites W2109896502 @default.
- W3016323452 cites W2120390927 @default.
- W3016323452 cites W2130036041 @default.
- W3016323452 cites W2135651282 @default.
- W3016323452 cites W2155105678 @default.
- W3016323452 cites W2156914236 @default.
- W3016323452 cites W2158728671 @default.
- W3016323452 cites W2163621334 @default.
- W3016323452 cites W2170613067 @default.
- W3016323452 cites W2241552698 @default.
- W3016323452 cites W2277108862 @default.
- W3016323452 cites W2330714737 @default.
- W3016323452 cites W2363608638 @default.
- W3016323452 cites W2587122088 @default.
- W3016323452 cites W2588883273 @default.
- W3016323452 cites W2614711037 @default.
- W3016323452 cites W2740983381 @default.
- W3016323452 cites W2766284769 @default.
- W3016323452 cites W2767446000 @default.
- W3016323452 cites W2810106967 @default.
- W3016323452 cites W2962781855 @default.
- W3016323452 cites W2964693966 @default.
- W3016323452 cites W2990256162 @default.
- W3016323452 cites W4205566328 @default.
- W3016323452 cites W948048528 @default.
- W3016323452 doi "https://doi.org/10.1109/jbhi.2020.2987528" @default.
- W3016323452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32305948" @default.
- W3016323452 hasPublicationYear "2021" @default.
- W3016323452 type Work @default.
- W3016323452 sameAs 3016323452 @default.
- W3016323452 citedByCount "18" @default.
- W3016323452 countsByYear W30163234522021 @default.
- W3016323452 countsByYear W30163234522022 @default.
- W3016323452 countsByYear W30163234522023 @default.
- W3016323452 crossrefType "journal-article" @default.
- W3016323452 hasAuthorship W3016323452A5026748241 @default.
- W3016323452 hasAuthorship W3016323452A5040002528 @default.
- W3016323452 hasAuthorship W3016323452A5062272467 @default.
- W3016323452 hasAuthorship W3016323452A5078125284 @default.
- W3016323452 hasAuthorship W3016323452A5078143614 @default.
- W3016323452 hasConcept C104267543 @default.
- W3016323452 hasConcept C111919701 @default.
- W3016323452 hasConcept C11413529 @default.
- W3016323452 hasConcept C115961682 @default.
- W3016323452 hasConcept C124681953 @default.
- W3016323452 hasConcept C153180895 @default.
- W3016323452 hasConcept C154945302 @default.
- W3016323452 hasConcept C18903297 @default.
- W3016323452 hasConcept C191178318 @default.
- W3016323452 hasConcept C199360897 @default.
- W3016323452 hasConcept C2779843651 @default.
- W3016323452 hasConcept C28490314 @default.
- W3016323452 hasConcept C2988922011 @default.
- W3016323452 hasConcept C31972630 @default.
- W3016323452 hasConcept C41008148 @default.
- W3016323452 hasConcept C48677424 @default.
- W3016323452 hasConcept C554190296 @default.
- W3016323452 hasConcept C76155785 @default.
- W3016323452 hasConcept C86803240 @default.
- W3016323452 hasConceptScore W3016323452C104267543 @default.
- W3016323452 hasConceptScore W3016323452C111919701 @default.
- W3016323452 hasConceptScore W3016323452C11413529 @default.
- W3016323452 hasConceptScore W3016323452C115961682 @default.
- W3016323452 hasConceptScore W3016323452C124681953 @default.
- W3016323452 hasConceptScore W3016323452C153180895 @default.
- W3016323452 hasConceptScore W3016323452C154945302 @default.
- W3016323452 hasConceptScore W3016323452C18903297 @default.
- W3016323452 hasConceptScore W3016323452C191178318 @default.
- W3016323452 hasConceptScore W3016323452C199360897 @default.
- W3016323452 hasConceptScore W3016323452C2779843651 @default.
- W3016323452 hasConceptScore W3016323452C28490314 @default.
- W3016323452 hasConceptScore W3016323452C2988922011 @default.
- W3016323452 hasConceptScore W3016323452C31972630 @default.
- W3016323452 hasConceptScore W3016323452C41008148 @default.
- W3016323452 hasConceptScore W3016323452C48677424 @default.