Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016353205> ?p ?o ?g. }
- W3016353205 endingPage "3400" @default.
- W3016353205 startingPage "3391" @default.
- W3016353205 abstract "With the rapid increase of industrial systems, industrial spectrum is stepping into the era of big data, and at the same time spectrum resources are facing serious shortage. Cognitive industrial system (CIS) based on cognitive radio can improve spectrum utilization by accessing the idle spectrum licensed to primary user. However, the CIS must find enough idle channels by performing spectrum sensing. In this article, a reinforcement learning-based multislot double-threshold spectrum sensing with Bayesian fusion is proposed to sense industrial big spectrum data, which can find required idle channels faster while guaranteeing spectrum sensing performance. Double thresholds are set to guarantee both high detection probability and spectrum access probability, and weighed energy detection is proposed to maximize detection probability when the energy statistic falls into the confusion area between the double thresholds. Bayesian fusion is proposed to get a final decision on the channel availability by combining the local sensing decisions of all the time slots. A prediction and selection algorithm for idle channels is proposed to predict the idle probability of each channel and find required idle channels from the sorted channel set. From simulation results, the proposed spectrum sensing scheme outperforms cooperative spectrum sensing and energy detection, which can predict idle channels accurately and get needed idle channels with fewer sensing operations." @default.
- W3016353205 created "2020-04-24" @default.
- W3016353205 creator A5021687717 @default.
- W3016353205 creator A5037835022 @default.
- W3016353205 creator A5042092772 @default.
- W3016353205 creator A5042407976 @default.
- W3016353205 creator A5046333931 @default.
- W3016353205 creator A5062917955 @default.
- W3016353205 date "2021-05-01" @default.
- W3016353205 modified "2023-10-15" @default.
- W3016353205 title "Reinforcement Learning-Based Multislot Double-Threshold Spectrum Sensing With Bayesian Fusion for Industrial Big Spectrum Data" @default.
- W3016353205 cites W1906224694 @default.
- W3016353205 cites W1969720927 @default.
- W3016353205 cites W2030137848 @default.
- W3016353205 cites W2031211320 @default.
- W3016353205 cites W2058937474 @default.
- W3016353205 cites W2093613770 @default.
- W3016353205 cites W2108721666 @default.
- W3016353205 cites W2567461779 @default.
- W3016353205 cites W2599557761 @default.
- W3016353205 cites W2605049359 @default.
- W3016353205 cites W2738606439 @default.
- W3016353205 cites W2761717674 @default.
- W3016353205 cites W2769004313 @default.
- W3016353205 cites W2774142993 @default.
- W3016353205 cites W2781845671 @default.
- W3016353205 cites W2789188956 @default.
- W3016353205 cites W2803374569 @default.
- W3016353205 cites W2805454539 @default.
- W3016353205 cites W2808299021 @default.
- W3016353205 cites W2890272365 @default.
- W3016353205 cites W2905601756 @default.
- W3016353205 cites W2916538289 @default.
- W3016353205 cites W2938135176 @default.
- W3016353205 cites W2953056530 @default.
- W3016353205 cites W2964368963 @default.
- W3016353205 cites W2969834427 @default.
- W3016353205 cites W2973557046 @default.
- W3016353205 cites W2981134958 @default.
- W3016353205 cites W2998711990 @default.
- W3016353205 doi "https://doi.org/10.1109/tii.2020.2987421" @default.
- W3016353205 hasPublicationYear "2021" @default.
- W3016353205 type Work @default.
- W3016353205 sameAs 3016353205 @default.
- W3016353205 citedByCount "61" @default.
- W3016353205 countsByYear W30163532052020 @default.
- W3016353205 countsByYear W30163532052021 @default.
- W3016353205 countsByYear W30163532052022 @default.
- W3016353205 countsByYear W30163532052023 @default.
- W3016353205 crossrefType "journal-article" @default.
- W3016353205 hasAuthorship W3016353205A5021687717 @default.
- W3016353205 hasAuthorship W3016353205A5037835022 @default.
- W3016353205 hasAuthorship W3016353205A5042092772 @default.
- W3016353205 hasAuthorship W3016353205A5042407976 @default.
- W3016353205 hasAuthorship W3016353205A5046333931 @default.
- W3016353205 hasAuthorship W3016353205A5062917955 @default.
- W3016353205 hasConcept C105795698 @default.
- W3016353205 hasConcept C111919701 @default.
- W3016353205 hasConcept C127162648 @default.
- W3016353205 hasConcept C149946192 @default.
- W3016353205 hasConcept C154945302 @default.
- W3016353205 hasConcept C16320812 @default.
- W3016353205 hasConcept C186370098 @default.
- W3016353205 hasConcept C31258907 @default.
- W3016353205 hasConcept C33923547 @default.
- W3016353205 hasConcept C33954974 @default.
- W3016353205 hasConcept C41008148 @default.
- W3016353205 hasConcept C555944384 @default.
- W3016353205 hasConcept C63029442 @default.
- W3016353205 hasConcept C76155785 @default.
- W3016353205 hasConcept C79403827 @default.
- W3016353205 hasConceptScore W3016353205C105795698 @default.
- W3016353205 hasConceptScore W3016353205C111919701 @default.
- W3016353205 hasConceptScore W3016353205C127162648 @default.
- W3016353205 hasConceptScore W3016353205C149946192 @default.
- W3016353205 hasConceptScore W3016353205C154945302 @default.
- W3016353205 hasConceptScore W3016353205C16320812 @default.
- W3016353205 hasConceptScore W3016353205C186370098 @default.
- W3016353205 hasConceptScore W3016353205C31258907 @default.
- W3016353205 hasConceptScore W3016353205C33923547 @default.
- W3016353205 hasConceptScore W3016353205C33954974 @default.
- W3016353205 hasConceptScore W3016353205C41008148 @default.
- W3016353205 hasConceptScore W3016353205C555944384 @default.
- W3016353205 hasConceptScore W3016353205C63029442 @default.
- W3016353205 hasConceptScore W3016353205C76155785 @default.
- W3016353205 hasConceptScore W3016353205C79403827 @default.
- W3016353205 hasFunder F4320321001 @default.
- W3016353205 hasIssue "5" @default.
- W3016353205 hasLocation W30163532051 @default.
- W3016353205 hasOpenAccess W3016353205 @default.
- W3016353205 hasPrimaryLocation W30163532051 @default.
- W3016353205 hasRelatedWork W1976405282 @default.
- W3016353205 hasRelatedWork W2054719951 @default.
- W3016353205 hasRelatedWork W2078869233 @default.
- W3016353205 hasRelatedWork W2336181987 @default.
- W3016353205 hasRelatedWork W2392764151 @default.
- W3016353205 hasRelatedWork W2532026886 @default.
- W3016353205 hasRelatedWork W2541724026 @default.