Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016372110> ?p ?o ?g. }
- W3016372110 endingPage "193" @default.
- W3016372110 startingPage "165" @default.
- W3016372110 abstract "We propose an efficient surrogate modeling technique for uncertainty quantification. The method is based on a well-known dimension-adaptive collocation scheme. We improve the scheme by enhancing sparse polynomial surrogates with conformal maps and adjoint error correction. The methodology is applied to Maxwell's source problem with random input data. This setting comprises many applications of current interest from computational nanoplasmonics, such as grating couplers or optical waveguides. Using a non-trivial benchmark model we show the benefits and drawbacks of using enhanced surrogate models through various numerical studies. The proposed strategy allows us to conduct a thorough uncertainty analysis, taking into account a moderately large number of random parameters." @default.
- W3016372110 created "2020-04-24" @default.
- W3016372110 creator A5013517565 @default.
- W3016372110 creator A5025553101 @default.
- W3016372110 creator A5054323051 @default.
- W3016372110 creator A5065295039 @default.
- W3016372110 date "2020-01-01" @default.
- W3016372110 modified "2023-10-11" @default.
- W3016372110 title "ENHANCED ADAPTIVE SURROGATE MODELS WITH APPLICATIONS IN UNCERTAINTY QUANTIFICATION FOR NANOPLASMONICS" @default.
- W3016372110 cites W1538934584 @default.
- W3016372110 cites W1605773447 @default.
- W3016372110 cites W1805381866 @default.
- W3016372110 cites W1880751280 @default.
- W3016372110 cites W1963837052 @default.
- W3016372110 cites W1968969774 @default.
- W3016372110 cites W1979307734 @default.
- W3016372110 cites W1982421072 @default.
- W3016372110 cites W1983156129 @default.
- W3016372110 cites W1986545995 @default.
- W3016372110 cites W1992066335 @default.
- W3016372110 cites W1996552720 @default.
- W3016372110 cites W1996786502 @default.
- W3016372110 cites W2005606401 @default.
- W3016372110 cites W2018159038 @default.
- W3016372110 cites W2041509689 @default.
- W3016372110 cites W2044283475 @default.
- W3016372110 cites W2055460625 @default.
- W3016372110 cites W2060528584 @default.
- W3016372110 cites W2062618977 @default.
- W3016372110 cites W2075661910 @default.
- W3016372110 cites W2078768478 @default.
- W3016372110 cites W2079884585 @default.
- W3016372110 cites W2083845086 @default.
- W3016372110 cites W2083926174 @default.
- W3016372110 cites W2112311198 @default.
- W3016372110 cites W2133147107 @default.
- W3016372110 cites W2137295153 @default.
- W3016372110 cites W2142863015 @default.
- W3016372110 cites W2143591652 @default.
- W3016372110 cites W2143783905 @default.
- W3016372110 cites W2152896489 @default.
- W3016372110 cites W2171854205 @default.
- W3016372110 cites W2194672605 @default.
- W3016372110 cites W2204770850 @default.
- W3016372110 cites W2212370034 @default.
- W3016372110 cites W2212616210 @default.
- W3016372110 cites W2519517567 @default.
- W3016372110 cites W253307310 @default.
- W3016372110 cites W2606283473 @default.
- W3016372110 cites W2613825967 @default.
- W3016372110 cites W2773416920 @default.
- W3016372110 cites W2792017407 @default.
- W3016372110 cites W2809197528 @default.
- W3016372110 cites W2895692827 @default.
- W3016372110 cites W2913616453 @default.
- W3016372110 cites W2914121438 @default.
- W3016372110 cites W2934600284 @default.
- W3016372110 cites W2937292707 @default.
- W3016372110 cites W2951381089 @default.
- W3016372110 cites W2976393956 @default.
- W3016372110 cites W2991629278 @default.
- W3016372110 cites W2993729843 @default.
- W3016372110 cites W3008241466 @default.
- W3016372110 cites W302063667 @default.
- W3016372110 cites W3103113183 @default.
- W3016372110 cites W87368160 @default.
- W3016372110 doi "https://doi.org/10.1615/int.j.uncertaintyquantification.2020031727" @default.
- W3016372110 hasPublicationYear "2020" @default.
- W3016372110 type Work @default.
- W3016372110 sameAs 3016372110 @default.
- W3016372110 citedByCount "5" @default.
- W3016372110 countsByYear W30163721102020 @default.
- W3016372110 countsByYear W30163721102021 @default.
- W3016372110 countsByYear W30163721102023 @default.
- W3016372110 crossrefType "journal-article" @default.
- W3016372110 hasAuthorship W3016372110A5013517565 @default.
- W3016372110 hasAuthorship W3016372110A5025553101 @default.
- W3016372110 hasAuthorship W3016372110A5054323051 @default.
- W3016372110 hasAuthorship W3016372110A5065295039 @default.
- W3016372110 hasBestOaLocation W30163721101 @default.
- W3016372110 hasConcept C105795698 @default.
- W3016372110 hasConcept C11413529 @default.
- W3016372110 hasConcept C119857082 @default.
- W3016372110 hasConcept C123614077 @default.
- W3016372110 hasConcept C126255220 @default.
- W3016372110 hasConcept C131675550 @default.
- W3016372110 hasConcept C13280743 @default.
- W3016372110 hasConcept C134306372 @default.
- W3016372110 hasConcept C185798385 @default.
- W3016372110 hasConcept C19499675 @default.
- W3016372110 hasConcept C197656079 @default.
- W3016372110 hasConcept C202444582 @default.
- W3016372110 hasConcept C205649164 @default.
- W3016372110 hasConcept C32230216 @default.
- W3016372110 hasConcept C33676613 @default.
- W3016372110 hasConcept C33923547 @default.
- W3016372110 hasConcept C41008148 @default.
- W3016372110 hasConcept C77618280 @default.