Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016402845> ?p ?o ?g. }
- W3016402845 abstract "Penalized Least Squares are widely used in signal and image processing. Yet, it suffers from a major limitation since it requires fine-tuning of the regularization parameters. Under assumptions on the noise probability distribution, Stein-based approaches provide unbiased estimator of the quadratic risk. The Generalized Stein Unbiased Risk Estimator is revisited to handle correlated Gaussian noise without requiring to invert the covariance matrix. Then, in order to avoid expansive grid search, it is necessary to design algorithmic scheme minimizing the quadratic risk with respect to regularization parameters. This work extends the Stein's Unbiased GrAdient estimator of the Risk of Deledalle et al. to the case of correlated Gaussian noise, deriving a general automatic tuning of regularization parameters. First, the theoretical asymptotic unbiasedness of the gradient estimator is demonstrated in the case of general correlated Gaussian noise. Then, the proposed parameter selection strategy is particularized to fractal texture segmentation, where problem formulation naturally entails inter-scale and spatially correlated noise. Numerical assessment is provided, as well as discussion of the practical issues." @default.
- W3016402845 created "2020-04-24" @default.
- W3016402845 creator A5050643672 @default.
- W3016402845 creator A5065881667 @default.
- W3016402845 creator A5074166239 @default.
- W3016402845 creator A5087385766 @default.
- W3016402845 date "2020-04-20" @default.
- W3016402845 modified "2023-09-24" @default.
- W3016402845 title "Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation" @default.
- W3016402845 cites W1561615602 @default.
- W3016402845 cites W1563853427 @default.
- W3016402845 cites W1593038947 @default.
- W3016402845 cites W18046889 @default.
- W3016402845 cites W1946620893 @default.
- W3016402845 cites W1968735445 @default.
- W3016402845 cites W1968982346 @default.
- W3016402845 cites W197263087 @default.
- W3016402845 cites W1990381576 @default.
- W3016402845 cites W2000359198 @default.
- W3016402845 cites W2005490094 @default.
- W3016402845 cites W2007203285 @default.
- W3016402845 cites W2010315317 @default.
- W3016402845 cites W2017387343 @default.
- W3016402845 cites W2021535288 @default.
- W3016402845 cites W2040378863 @default.
- W3016402845 cites W2041635444 @default.
- W3016402845 cites W2043778742 @default.
- W3016402845 cites W2052387674 @default.
- W3016402845 cites W2052418342 @default.
- W3016402845 cites W2052674505 @default.
- W3016402845 cites W2054366147 @default.
- W3016402845 cites W2054640142 @default.
- W3016402845 cites W205960364 @default.
- W3016402845 cites W2060619704 @default.
- W3016402845 cites W2065275062 @default.
- W3016402845 cites W2070627872 @default.
- W3016402845 cites W2079724595 @default.
- W3016402845 cites W2082212568 @default.
- W3016402845 cites W2083236768 @default.
- W3016402845 cites W2085048703 @default.
- W3016402845 cites W2088349114 @default.
- W3016402845 cites W2092663520 @default.
- W3016402845 cites W2097998348 @default.
- W3016402845 cites W2100053953 @default.
- W3016402845 cites W2100556411 @default.
- W3016402845 cites W2103559027 @default.
- W3016402845 cites W2108855378 @default.
- W3016402845 cites W2111856461 @default.
- W3016402845 cites W2112479046 @default.
- W3016402845 cites W2113207845 @default.
- W3016402845 cites W2113920645 @default.
- W3016402845 cites W2116641053 @default.
- W3016402845 cites W2125542221 @default.
- W3016402845 cites W2126759246 @default.
- W3016402845 cites W2135046866 @default.
- W3016402845 cites W2140742952 @default.
- W3016402845 cites W2142005762 @default.
- W3016402845 cites W2145568341 @default.
- W3016402845 cites W2158940042 @default.
- W3016402845 cites W2164214015 @default.
- W3016402845 cites W2264565418 @default.
- W3016402845 cites W2330056217 @default.
- W3016402845 cites W2342548755 @default.
- W3016402845 cites W2467077495 @default.
- W3016402845 cites W2484247699 @default.
- W3016402845 cites W2883603500 @default.
- W3016402845 cites W2884917220 @default.
- W3016402845 cites W2913535645 @default.
- W3016402845 cites W2946155547 @default.
- W3016402845 cites W2963428042 @default.
- W3016402845 cites W2963568011 @default.
- W3016402845 cites W2979943932 @default.
- W3016402845 cites W2991046771 @default.
- W3016402845 cites W2993140656 @default.
- W3016402845 cites W3007846651 @default.
- W3016402845 cites W3029645440 @default.
- W3016402845 cites W3098272239 @default.
- W3016402845 cites W3140779631 @default.
- W3016402845 cites W2154415584 @default.
- W3016402845 hasPublicationYear "2020" @default.
- W3016402845 type Work @default.
- W3016402845 sameAs 3016402845 @default.
- W3016402845 citedByCount "2" @default.
- W3016402845 countsByYear W30164028452020 @default.
- W3016402845 countsByYear W30164028452021 @default.
- W3016402845 crossrefType "posted-content" @default.
- W3016402845 hasAuthorship W3016402845A5050643672 @default.
- W3016402845 hasAuthorship W3016402845A5065881667 @default.
- W3016402845 hasAuthorship W3016402845A5074166239 @default.
- W3016402845 hasAuthorship W3016402845A5087385766 @default.
- W3016402845 hasConcept C105795698 @default.
- W3016402845 hasConcept C11413529 @default.
- W3016402845 hasConcept C121332964 @default.
- W3016402845 hasConcept C126255220 @default.
- W3016402845 hasConcept C134962040 @default.
- W3016402845 hasConcept C154945302 @default.
- W3016402845 hasConcept C163716315 @default.
- W3016402845 hasConcept C165646398 @default.
- W3016402845 hasConcept C185429906 @default.
- W3016402845 hasConcept C191393472 @default.