Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016487788> ?p ?o ?g. }
- W3016487788 endingPage "73372" @default.
- W3016487788 startingPage "73359" @default.
- W3016487788 abstract "A deep learning model was applied for predicting a cross-sectional bead image from laser welding process parameters. The proposed model consists of two successive generators. The first generator produces a weld bead segmentation map from laser intensity and interaction time, which is subsequently translated into an optical microscopic (OM) image by the second generator. Both generators exhibit an encoder-decoder structure based on a convolutional neural network (CNN). In the second generator, a conditional generative adversarial network (cGAN) was additionally employed with multiscale discriminators and residual blocks, considering the size of the OM image. For a training dataset, laser welding experiments with AISI 1020 steel were conducted on a large process window using a 2 KW fiber laser, and a total of 39 process conditions were used for the training. High-resolution OM images were successfully generated, and the predicted bead shapes were reasonably accurate (R-Squared: 89.0% for penetration depth, 93.6% for weld bead area)." @default.
- W3016487788 created "2020-04-24" @default.
- W3016487788 creator A5030297209 @default.
- W3016487788 creator A5047216169 @default.
- W3016487788 date "2020-01-01" @default.
- W3016487788 modified "2023-09-30" @default.
- W3016487788 title "Cross-Section Bead Image Prediction in Laser Keyhole Welding of AISI 1020 Steel Using Deep Learning Architectures" @default.
- W3016487788 cites W1915485278 @default.
- W3016487788 cites W1984340825 @default.
- W3016487788 cites W2004332806 @default.
- W3016487788 cites W2005003595 @default.
- W3016487788 cites W2008459376 @default.
- W3016487788 cites W2012497057 @default.
- W3016487788 cites W2013742293 @default.
- W3016487788 cites W2030039580 @default.
- W3016487788 cites W2035462959 @default.
- W3016487788 cites W2044185193 @default.
- W3016487788 cites W2046556786 @default.
- W3016487788 cites W2058455834 @default.
- W3016487788 cites W2062449123 @default.
- W3016487788 cites W2074095825 @default.
- W3016487788 cites W2077917833 @default.
- W3016487788 cites W2100495367 @default.
- W3016487788 cites W2106579940 @default.
- W3016487788 cites W2112796928 @default.
- W3016487788 cites W2194775991 @default.
- W3016487788 cites W2293078015 @default.
- W3016487788 cites W2593414223 @default.
- W3016487788 cites W2739195274 @default.
- W3016487788 cites W2801879601 @default.
- W3016487788 cites W2894258623 @default.
- W3016487788 cites W2907754697 @default.
- W3016487788 cites W2914292456 @default.
- W3016487788 cites W2954930822 @default.
- W3016487788 cites W2963073614 @default.
- W3016487788 cites W2963372104 @default.
- W3016487788 cites W2963470893 @default.
- W3016487788 cites W2963800363 @default.
- W3016487788 cites W2964101377 @default.
- W3016487788 doi "https://doi.org/10.1109/access.2020.2987858" @default.
- W3016487788 hasPublicationYear "2020" @default.
- W3016487788 type Work @default.
- W3016487788 sameAs 3016487788 @default.
- W3016487788 citedByCount "12" @default.
- W3016487788 countsByYear W30164877882020 @default.
- W3016487788 countsByYear W30164877882021 @default.
- W3016487788 countsByYear W30164877882022 @default.
- W3016487788 countsByYear W30164877882023 @default.
- W3016487788 crossrefType "journal-article" @default.
- W3016487788 hasAuthorship W3016487788A5030297209 @default.
- W3016487788 hasAuthorship W3016487788A5047216169 @default.
- W3016487788 hasBestOaLocation W30164877881 @default.
- W3016487788 hasConcept C120665830 @default.
- W3016487788 hasConcept C121332964 @default.
- W3016487788 hasConcept C154945302 @default.
- W3016487788 hasConcept C159985019 @default.
- W3016487788 hasConcept C163258240 @default.
- W3016487788 hasConcept C192562407 @default.
- W3016487788 hasConcept C19474535 @default.
- W3016487788 hasConcept C20480867 @default.
- W3016487788 hasConcept C2776139624 @default.
- W3016487788 hasConcept C2776143536 @default.
- W3016487788 hasConcept C2780992000 @default.
- W3016487788 hasConcept C3450827 @default.
- W3016487788 hasConcept C41008148 @default.
- W3016487788 hasConcept C520434653 @default.
- W3016487788 hasConcept C52234038 @default.
- W3016487788 hasConcept C62520636 @default.
- W3016487788 hasConcept C81363708 @default.
- W3016487788 hasConcept C89344249 @default.
- W3016487788 hasConcept C89600930 @default.
- W3016487788 hasConceptScore W3016487788C120665830 @default.
- W3016487788 hasConceptScore W3016487788C121332964 @default.
- W3016487788 hasConceptScore W3016487788C154945302 @default.
- W3016487788 hasConceptScore W3016487788C159985019 @default.
- W3016487788 hasConceptScore W3016487788C163258240 @default.
- W3016487788 hasConceptScore W3016487788C192562407 @default.
- W3016487788 hasConceptScore W3016487788C19474535 @default.
- W3016487788 hasConceptScore W3016487788C20480867 @default.
- W3016487788 hasConceptScore W3016487788C2776139624 @default.
- W3016487788 hasConceptScore W3016487788C2776143536 @default.
- W3016487788 hasConceptScore W3016487788C2780992000 @default.
- W3016487788 hasConceptScore W3016487788C3450827 @default.
- W3016487788 hasConceptScore W3016487788C41008148 @default.
- W3016487788 hasConceptScore W3016487788C520434653 @default.
- W3016487788 hasConceptScore W3016487788C52234038 @default.
- W3016487788 hasConceptScore W3016487788C62520636 @default.
- W3016487788 hasConceptScore W3016487788C81363708 @default.
- W3016487788 hasConceptScore W3016487788C89344249 @default.
- W3016487788 hasConceptScore W3016487788C89600930 @default.
- W3016487788 hasFunder F4320322120 @default.
- W3016487788 hasLocation W30164877881 @default.
- W3016487788 hasLocation W30164877882 @default.
- W3016487788 hasOpenAccess W3016487788 @default.
- W3016487788 hasPrimaryLocation W30164877881 @default.
- W3016487788 hasRelatedWork W2026387410 @default.
- W3016487788 hasRelatedWork W2088159283 @default.
- W3016487788 hasRelatedWork W2089022378 @default.