Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016502182> ?p ?o ?g. }
- W3016502182 endingPage "2469" @default.
- W3016502182 startingPage "2458" @default.
- W3016502182 abstract "Abstract Many biophysical problems involve molecular and nanoscale targets moving next to a curvilinear track, e.g., a cytosolic cargo transported by motor proteins moving along a microtubule. For this type of problem, fluorescence imaging is usually the primary tool of choice. There is, however, an ∼20-fold mismatch between target-localization precision and track-imaging resolution such that questions requiring high-fidelity definition of the target’s track remain inaccessible. On the other hand, if the contextual image of the tracks can be refined to a level comparable to that of the target, many intuitive yet mechanistically important issues can begin to be addressed. This work demonstrates that it is possible to statistically infer, to subpixel precision, curvilinear features in a low signal/noise image. This is achieved by a framework that consists of three stages: the Hessian-based feature enhancement, the subimage feature sampling and registration, and the statistical learning of the underlying curvilinear structure using a new, to our knowledge, method developed here for inferring the principal curves. In each stage, the descriptive prior information that the features come from curvilinear elements is explicitly taken into account. It is fully automated without user supervision, which is distinctly different from approaches that require user seeding or well-defined training data sets. Computer simulations of realistic images are used to investigate the performance of the framework and its implementation. The characterization results suggest that curvilinear features are refined to the same order of precision as that of the target and that the bootstrap confidence intervals from the analysis allow an estimate for the statistical bounds of the simulated “true” curve. Also shown are analyses of experimental images from three different microscopy modalities: two-photon laser-scanning microscopy, epifluorescence microscopy, and total internal reflection fluorescence microscopy. The practical application of this prior-apprised unsupervised learning framework as well as its potential outlook are discussed." @default.
- W3016502182 created "2020-04-24" @default.
- W3016502182 creator A5015420695 @default.
- W3016502182 creator A5037047538 @default.
- W3016502182 creator A5048016830 @default.
- W3016502182 date "2020-05-01" @default.
- W3016502182 modified "2023-09-27" @default.
- W3016502182 title "Prior-Apprised Unsupervised Learning of Subpixel Curvilinear Features in Low Signal/Noise Images" @default.
- W3016502182 cites W1458390031 @default.
- W3016502182 cites W1495971627 @default.
- W3016502182 cites W1596852471 @default.
- W3016502182 cites W1969365948 @default.
- W3016502182 cites W1971713783 @default.
- W3016502182 cites W1984618686 @default.
- W3016502182 cites W1987300577 @default.
- W3016502182 cites W1992722697 @default.
- W3016502182 cites W1992858116 @default.
- W3016502182 cites W1993381854 @default.
- W3016502182 cites W1995413508 @default.
- W3016502182 cites W2006126326 @default.
- W3016502182 cites W2021810362 @default.
- W3016502182 cites W2032145617 @default.
- W3016502182 cites W2040463853 @default.
- W3016502182 cites W2042383323 @default.
- W3016502182 cites W2043736118 @default.
- W3016502182 cites W2046033989 @default.
- W3016502182 cites W2052669149 @default.
- W3016502182 cites W2053165167 @default.
- W3016502182 cites W2054455698 @default.
- W3016502182 cites W2055708290 @default.
- W3016502182 cites W2057096287 @default.
- W3016502182 cites W2087396309 @default.
- W3016502182 cites W2088656315 @default.
- W3016502182 cites W2096425629 @default.
- W3016502182 cites W2098428695 @default.
- W3016502182 cites W2099229603 @default.
- W3016502182 cites W2101336703 @default.
- W3016502182 cites W2102386127 @default.
- W3016502182 cites W2104624493 @default.
- W3016502182 cites W2109200236 @default.
- W3016502182 cites W2112796928 @default.
- W3016502182 cites W2114320376 @default.
- W3016502182 cites W2121939621 @default.
- W3016502182 cites W2121947440 @default.
- W3016502182 cites W2124733101 @default.
- W3016502182 cites W2129899400 @default.
- W3016502182 cites W2132491413 @default.
- W3016502182 cites W2133059825 @default.
- W3016502182 cites W2138675231 @default.
- W3016502182 cites W2144572173 @default.
- W3016502182 cites W2149374899 @default.
- W3016502182 cites W2150167921 @default.
- W3016502182 cites W2151623448 @default.
- W3016502182 cites W2151857822 @default.
- W3016502182 cites W2155919146 @default.
- W3016502182 cites W2157191463 @default.
- W3016502182 cites W2158559093 @default.
- W3016502182 cites W2161020449 @default.
- W3016502182 cites W2161958403 @default.
- W3016502182 cites W2163400016 @default.
- W3016502182 cites W2166454051 @default.
- W3016502182 cites W2169594496 @default.
- W3016502182 cites W2323063542 @default.
- W3016502182 cites W2325351787 @default.
- W3016502182 cites W2343038172 @default.
- W3016502182 cites W2435707392 @default.
- W3016502182 cites W2467997623 @default.
- W3016502182 cites W2515908039 @default.
- W3016502182 cites W2543543758 @default.
- W3016502182 cites W2609028313 @default.
- W3016502182 cites W2626077650 @default.
- W3016502182 cites W2770676323 @default.
- W3016502182 cites W2774405321 @default.
- W3016502182 cites W2886354113 @default.
- W3016502182 cites W2901288575 @default.
- W3016502182 cites W2910308532 @default.
- W3016502182 cites W2950572451 @default.
- W3016502182 cites W4251002338 @default.
- W3016502182 doi "https://doi.org/10.1016/j.bpj.2020.04.009" @default.
- W3016502182 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7231927" @default.
- W3016502182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32359407" @default.
- W3016502182 hasPublicationYear "2020" @default.
- W3016502182 type Work @default.
- W3016502182 sameAs 3016502182 @default.
- W3016502182 citedByCount "2" @default.
- W3016502182 countsByYear W30165021822021 @default.
- W3016502182 countsByYear W30165021822022 @default.
- W3016502182 crossrefType "journal-article" @default.
- W3016502182 hasAuthorship W3016502182A5015420695 @default.
- W3016502182 hasAuthorship W3016502182A5037047538 @default.
- W3016502182 hasAuthorship W3016502182A5048016830 @default.
- W3016502182 hasBestOaLocation W30165021825 @default.
- W3016502182 hasConcept C115961682 @default.
- W3016502182 hasConcept C153180895 @default.
- W3016502182 hasConcept C154945302 @default.
- W3016502182 hasConcept C160633673 @default.
- W3016502182 hasConcept C2524010 @default.
- W3016502182 hasConcept C31972630 @default.