Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016527717> ?p ?o ?g. }
- W3016527717 abstract "Due to the large combinatorial problem, current beam orientation optimization algorithms for radiotherapy, such as column generation (CG), are typically heuristic or greedy in nature, leading to suboptimal solutions. We propose a reinforcement learning strategy using Monte Carlo Tree Search capable of finding a superior beam orientation set and in less time than CG.We utilized a reinforcement learning structure involving a supervised learning network to guide Monte Carlo tree search (GTS) to explore the decision space of beam orientation selection problem. We have previously trained a deep neural network (DNN) that takes in the patient anatomy, organ weights, and current beams, and then approximates beam fitness values, indicating the next best beam to add. This DNN is used to probabilistically guide the traversal of the branches of the Monte Carlo decision tree to add a new beam to the plan. To test the feasibility of the algorithm, we solved for 5-beam plans, using 13 test prostate cancer patients, different from the 57 training and validation patients originally trained the DNN. To show the strength of GTS to other search methods, performances of three other search methods including a guided search, uniform tree search and random search algorithms are also provided. On average GTS outperforms all other methods, it find a solution better than CG in 237 seconds on average, compared to CG which takes 360 seconds, and outperforms all other methods in finding a solution with lower objective function value in less than 1000 seconds. Using our guided tree search (GTS) method we were able to maintain a similar planning target volume (PTV) coverage within 1% error, and reduce the organ at risk (OAR) mean dose for body, rectum, left and right femoral heads, but a slight increase of 1% in bladder mean dose." @default.
- W3016527717 created "2020-04-24" @default.
- W3016527717 creator A5018120191 @default.
- W3016527717 creator A5062039700 @default.
- W3016527717 creator A5081307285 @default.
- W3016527717 creator A5089742260 @default.
- W3016527717 date "2020-04-13" @default.
- W3016527717 modified "2023-09-23" @default.
- W3016527717 title "A reinforcement learning application of guided Monte Carlo Tree Search algorithm for beam orientation selection in radiation therapy" @default.
- W3016527717 cites W100063776 @default.
- W3016527717 cites W1775486569 @default.
- W3016527717 cites W1964292403 @default.
- W3016527717 cites W1965325125 @default.
- W3016527717 cites W1969109537 @default.
- W3016527717 cites W1973695742 @default.
- W3016527717 cites W1975598755 @default.
- W3016527717 cites W1978876559 @default.
- W3016527717 cites W1979184234 @default.
- W3016527717 cites W1982315191 @default.
- W3016527717 cites W1982864028 @default.
- W3016527717 cites W2004233638 @default.
- W3016527717 cites W2006626394 @default.
- W3016527717 cites W2007510360 @default.
- W3016527717 cites W2038486124 @default.
- W3016527717 cites W2051246826 @default.
- W3016527717 cites W2062379060 @default.
- W3016527717 cites W2063094280 @default.
- W3016527717 cites W2089547408 @default.
- W3016527717 cites W2121005435 @default.
- W3016527717 cites W2124963566 @default.
- W3016527717 cites W2143472867 @default.
- W3016527717 cites W2183101157 @default.
- W3016527717 cites W2259473912 @default.
- W3016527717 cites W2327256747 @default.
- W3016527717 cites W2524647422 @default.
- W3016527717 cites W2737901513 @default.
- W3016527717 cites W2791582811 @default.
- W3016527717 cites W2793236676 @default.
- W3016527717 cites W2793469265 @default.
- W3016527717 cites W2800963641 @default.
- W3016527717 cites W2806173079 @default.
- W3016527717 cites W2955572521 @default.
- W3016527717 cites W2964185133 @default.
- W3016527717 cites W2996895692 @default.
- W3016527717 cites W3098640627 @default.
- W3016527717 cites W3103396062 @default.
- W3016527717 cites W370143576 @default.
- W3016527717 doi "https://doi.org/10.48550/arxiv.2004.06244" @default.
- W3016527717 hasPublicationYear "2020" @default.
- W3016527717 type Work @default.
- W3016527717 sameAs 3016527717 @default.
- W3016527717 citedByCount "0" @default.
- W3016527717 crossrefType "posted-content" @default.
- W3016527717 hasAuthorship W3016527717A5018120191 @default.
- W3016527717 hasAuthorship W3016527717A5062039700 @default.
- W3016527717 hasAuthorship W3016527717A5081307285 @default.
- W3016527717 hasAuthorship W3016527717A5089742260 @default.
- W3016527717 hasBestOaLocation W30165277171 @default.
- W3016527717 hasConcept C105795698 @default.
- W3016527717 hasConcept C113174947 @default.
- W3016527717 hasConcept C11413529 @default.
- W3016527717 hasConcept C125583679 @default.
- W3016527717 hasConcept C126255220 @default.
- W3016527717 hasConcept C134306372 @default.
- W3016527717 hasConcept C140745168 @default.
- W3016527717 hasConcept C14362708 @default.
- W3016527717 hasConcept C154945302 @default.
- W3016527717 hasConcept C16345878 @default.
- W3016527717 hasConcept C173801870 @default.
- W3016527717 hasConcept C19499675 @default.
- W3016527717 hasConcept C19889080 @default.
- W3016527717 hasConcept C2524010 @default.
- W3016527717 hasConcept C33923547 @default.
- W3016527717 hasConcept C41008148 @default.
- W3016527717 hasConcept C46011968 @default.
- W3016527717 hasConcept C46149586 @default.
- W3016527717 hasConcept C50644808 @default.
- W3016527717 hasConcept C97541855 @default.
- W3016527717 hasConceptScore W3016527717C105795698 @default.
- W3016527717 hasConceptScore W3016527717C113174947 @default.
- W3016527717 hasConceptScore W3016527717C11413529 @default.
- W3016527717 hasConceptScore W3016527717C125583679 @default.
- W3016527717 hasConceptScore W3016527717C126255220 @default.
- W3016527717 hasConceptScore W3016527717C134306372 @default.
- W3016527717 hasConceptScore W3016527717C140745168 @default.
- W3016527717 hasConceptScore W3016527717C14362708 @default.
- W3016527717 hasConceptScore W3016527717C154945302 @default.
- W3016527717 hasConceptScore W3016527717C16345878 @default.
- W3016527717 hasConceptScore W3016527717C173801870 @default.
- W3016527717 hasConceptScore W3016527717C19499675 @default.
- W3016527717 hasConceptScore W3016527717C19889080 @default.
- W3016527717 hasConceptScore W3016527717C2524010 @default.
- W3016527717 hasConceptScore W3016527717C33923547 @default.
- W3016527717 hasConceptScore W3016527717C41008148 @default.
- W3016527717 hasConceptScore W3016527717C46011968 @default.
- W3016527717 hasConceptScore W3016527717C46149586 @default.
- W3016527717 hasConceptScore W3016527717C50644808 @default.
- W3016527717 hasConceptScore W3016527717C97541855 @default.
- W3016527717 hasLocation W30165277171 @default.
- W3016527717 hasOpenAccess W3016527717 @default.