Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016561304> ?p ?o ?g. }
- W3016561304 endingPage "2770" @default.
- W3016561304 startingPage "2770" @default.
- W3016561304 abstract "Timely and accurate depth estimation of a shallow waterway can improve shipping efficiency and reduce the danger of waterway transport accidents. However, waterway depth data measured during actual maritime navigation is limited, and the depth values can have large variability. Big data collected in real time by automatic identification systems (AIS) might provide a way to estimate accurate waterway depths, although these data include no direct channel depth information. We suggest a deep neural network (DNN) based model, called DDTree, for using the real-time AIS data and the data from Global Mapper to predict waterway depth for ships in an accurate and timely way. The model combines a decision tree and DNN, which is trained and tested on the AIS and Global Mapper data from the Nantong and Fangcheng ports on the southeastern and southwestern coast of China. The actual waterway depth data were used together with the AIS data as the input to DDTree. The latest data on waterway depths from the Chinese maritime agency were used to verify the results. The experiments show that the DDTree model has a prediction accuracy of 91.15%. Therefore, the DDTree model can provide an accurate prediction of waterway depth and compensate for the shortage of waterway depth monitoring means. The proposed hybrid DDTree model could improve marine situational awareness, navigation safety, and shipping efficiency, and contribute to smart navigation." @default.
- W3016561304 created "2020-04-24" @default.
- W3016561304 creator A5003799076 @default.
- W3016561304 creator A5016267473 @default.
- W3016561304 creator A5033007900 @default.
- W3016561304 creator A5042653526 @default.
- W3016561304 creator A5052071646 @default.
- W3016561304 creator A5058010200 @default.
- W3016561304 creator A5080251597 @default.
- W3016561304 date "2020-04-16" @default.
- W3016561304 modified "2023-10-07" @default.
- W3016561304 title "DDTree: A Hybrid Deep Learning Model for Real-Time Waterway Depth Prediction and Smart Navigation" @default.
- W3016561304 cites W2000979466 @default.
- W3016561304 cites W2015468857 @default.
- W3016561304 cites W2044770827 @default.
- W3016561304 cites W2054972686 @default.
- W3016561304 cites W2072179498 @default.
- W3016561304 cites W2079584251 @default.
- W3016561304 cites W2140102009 @default.
- W3016561304 cites W2162768539 @default.
- W3016561304 cites W2268868325 @default.
- W3016561304 cites W2488758040 @default.
- W3016561304 cites W2497766802 @default.
- W3016561304 cites W2587001375 @default.
- W3016561304 cites W2606922834 @default.
- W3016561304 cites W2611617546 @default.
- W3016561304 cites W2625817661 @default.
- W3016561304 cites W2742588890 @default.
- W3016561304 cites W2744174391 @default.
- W3016561304 cites W2750783839 @default.
- W3016561304 cites W2753820606 @default.
- W3016561304 cites W2768511943 @default.
- W3016561304 cites W2802636049 @default.
- W3016561304 cites W2885954086 @default.
- W3016561304 cites W2891814210 @default.
- W3016561304 cites W2892330441 @default.
- W3016561304 cites W2902014721 @default.
- W3016561304 cites W2908346916 @default.
- W3016561304 cites W2912001053 @default.
- W3016561304 cites W2921410781 @default.
- W3016561304 cites W2936794463 @default.
- W3016561304 cites W2938208016 @default.
- W3016561304 cites W2964482263 @default.
- W3016561304 cites W2969837149 @default.
- W3016561304 cites W2973963337 @default.
- W3016561304 cites W2991602025 @default.
- W3016561304 cites W3003495899 @default.
- W3016561304 doi "https://doi.org/10.3390/app10082770" @default.
- W3016561304 hasPublicationYear "2020" @default.
- W3016561304 type Work @default.
- W3016561304 sameAs 3016561304 @default.
- W3016561304 citedByCount "13" @default.
- W3016561304 countsByYear W30165613042021 @default.
- W3016561304 countsByYear W30165613042022 @default.
- W3016561304 countsByYear W30165613042023 @default.
- W3016561304 crossrefType "journal-article" @default.
- W3016561304 hasAuthorship W3016561304A5003799076 @default.
- W3016561304 hasAuthorship W3016561304A5016267473 @default.
- W3016561304 hasAuthorship W3016561304A5033007900 @default.
- W3016561304 hasAuthorship W3016561304A5042653526 @default.
- W3016561304 hasAuthorship W3016561304A5052071646 @default.
- W3016561304 hasAuthorship W3016561304A5058010200 @default.
- W3016561304 hasAuthorship W3016561304A5080251597 @default.
- W3016561304 hasBestOaLocation W30165613041 @default.
- W3016561304 hasConcept C127162648 @default.
- W3016561304 hasConcept C127413603 @default.
- W3016561304 hasConcept C138885662 @default.
- W3016561304 hasConcept C146997752 @default.
- W3016561304 hasConcept C154945302 @default.
- W3016561304 hasConcept C194051981 @default.
- W3016561304 hasConcept C199104240 @default.
- W3016561304 hasConcept C2778137410 @default.
- W3016561304 hasConcept C41008148 @default.
- W3016561304 hasConcept C41895202 @default.
- W3016561304 hasConcept C50644808 @default.
- W3016561304 hasConcept C76155785 @default.
- W3016561304 hasConcept C79403827 @default.
- W3016561304 hasConceptScore W3016561304C127162648 @default.
- W3016561304 hasConceptScore W3016561304C127413603 @default.
- W3016561304 hasConceptScore W3016561304C138885662 @default.
- W3016561304 hasConceptScore W3016561304C146997752 @default.
- W3016561304 hasConceptScore W3016561304C154945302 @default.
- W3016561304 hasConceptScore W3016561304C194051981 @default.
- W3016561304 hasConceptScore W3016561304C199104240 @default.
- W3016561304 hasConceptScore W3016561304C2778137410 @default.
- W3016561304 hasConceptScore W3016561304C41008148 @default.
- W3016561304 hasConceptScore W3016561304C41895202 @default.
- W3016561304 hasConceptScore W3016561304C50644808 @default.
- W3016561304 hasConceptScore W3016561304C76155785 @default.
- W3016561304 hasConceptScore W3016561304C79403827 @default.
- W3016561304 hasFunder F4320335595 @default.
- W3016561304 hasIssue "8" @default.
- W3016561304 hasLocation W30165613041 @default.
- W3016561304 hasLocation W30165613042 @default.
- W3016561304 hasOpenAccess W3016561304 @default.
- W3016561304 hasPrimaryLocation W30165613041 @default.
- W3016561304 hasRelatedWork W2067795130 @default.
- W3016561304 hasRelatedWork W2509147714 @default.