Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016573911> ?p ?o ?g. }
- W3016573911 endingPage "116796" @default.
- W3016573911 startingPage "116796" @default.
- W3016573911 abstract "'Non-parametric directionality' (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015).This work presents a validation of NPD in continuous neural recordings (e.g. local field potentials). Specifically, we use autoregressive models to simulate time delayed correlations between neural signals. We then test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) data length, and f) parallel/convergent signal routing. We also apply NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording.We demonstrate that NPD can accurately recover directed functional connectivity from simulations with known patterns of connectivity. The performance of the NPD measure is compared with non-parametric estimators of Granger causality (NPG), a well-established methodology for model-free estimation of dFC. A series of simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connectivity that are equivalent to NPG, albeit with an increased sensitivity to data length. However, we provide evidence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate amounts of instantaneous signal mixing.The results in this paper highlight that to be practically applied to neural data, connectivity metrics should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging." @default.
- W3016573911 created "2020-04-24" @default.
- W3016573911 creator A5026981278 @default.
- W3016573911 creator A5030160648 @default.
- W3016573911 creator A5038948118 @default.
- W3016573911 creator A5041205424 @default.
- W3016573911 creator A5071343779 @default.
- W3016573911 date "2020-09-01" @default.
- W3016573911 modified "2023-09-24" @default.
- W3016573911 title "Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger Causality" @default.
- W3016573911 cites W1636081627 @default.
- W3016573911 cites W1834940226 @default.
- W3016573911 cites W1964769652 @default.
- W3016573911 cites W1966641148 @default.
- W3016573911 cites W1972509571 @default.
- W3016573911 cites W1983523765 @default.
- W3016573911 cites W1998420666 @default.
- W3016573911 cites W2003209004 @default.
- W3016573911 cites W2009914532 @default.
- W3016573911 cites W2011611054 @default.
- W3016573911 cites W2018305040 @default.
- W3016573911 cites W2019232098 @default.
- W3016573911 cites W2020245429 @default.
- W3016573911 cites W2025371899 @default.
- W3016573911 cites W2043301888 @default.
- W3016573911 cites W2050995101 @default.
- W3016573911 cites W2061564920 @default.
- W3016573911 cites W206280282 @default.
- W3016573911 cites W2063347383 @default.
- W3016573911 cites W2071941563 @default.
- W3016573911 cites W2077491345 @default.
- W3016573911 cites W2079634169 @default.
- W3016573911 cites W2079733958 @default.
- W3016573911 cites W2091066310 @default.
- W3016573911 cites W2096875305 @default.
- W3016573911 cites W2098746383 @default.
- W3016573911 cites W2099610690 @default.
- W3016573911 cites W2107300011 @default.
- W3016573911 cites W2113114335 @default.
- W3016573911 cites W2113762408 @default.
- W3016573911 cites W2115810652 @default.
- W3016573911 cites W2123346926 @default.
- W3016573911 cites W2129846302 @default.
- W3016573911 cites W2130028041 @default.
- W3016573911 cites W2133280087 @default.
- W3016573911 cites W2136562407 @default.
- W3016573911 cites W2142373488 @default.
- W3016573911 cites W2147899888 @default.
- W3016573911 cites W2154674952 @default.
- W3016573911 cites W2168396492 @default.
- W3016573911 cites W2171352244 @default.
- W3016573911 cites W2178225550 @default.
- W3016573911 cites W2219596751 @default.
- W3016573911 cites W2227520796 @default.
- W3016573911 cites W2346454556 @default.
- W3016573911 cites W2495024895 @default.
- W3016573911 cites W2808553959 @default.
- W3016573911 cites W2917843156 @default.
- W3016573911 cites W2949381541 @default.
- W3016573911 cites W1578899157 @default.
- W3016573911 doi "https://doi.org/10.1016/j.neuroimage.2020.116796" @default.
- W3016573911 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7116477" @default.
- W3016573911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32325209" @default.
- W3016573911 hasPublicationYear "2020" @default.
- W3016573911 type Work @default.
- W3016573911 sameAs 3016573911 @default.
- W3016573911 citedByCount "14" @default.
- W3016573911 countsByYear W30165739112019 @default.
- W3016573911 countsByYear W30165739112020 @default.
- W3016573911 countsByYear W30165739112021 @default.
- W3016573911 countsByYear W30165739112022 @default.
- W3016573911 countsByYear W30165739112023 @default.
- W3016573911 crossrefType "journal-article" @default.
- W3016573911 hasAuthorship W3016573911A5026981278 @default.
- W3016573911 hasAuthorship W3016573911A5030160648 @default.
- W3016573911 hasAuthorship W3016573911A5038948118 @default.
- W3016573911 hasAuthorship W3016573911A5041205424 @default.
- W3016573911 hasAuthorship W3016573911A5071343779 @default.
- W3016573911 hasBestOaLocation W30165739111 @default.
- W3016573911 hasConcept C102366305 @default.
- W3016573911 hasConcept C105795698 @default.
- W3016573911 hasConcept C115961682 @default.
- W3016573911 hasConcept C117251300 @default.
- W3016573911 hasConcept C119857082 @default.
- W3016573911 hasConcept C129824826 @default.
- W3016573911 hasConcept C149782125 @default.
- W3016573911 hasConcept C153180895 @default.
- W3016573911 hasConcept C154945302 @default.
- W3016573911 hasConcept C15744967 @default.
- W3016573911 hasConcept C159877910 @default.
- W3016573911 hasConcept C169760540 @default.
- W3016573911 hasConcept C185429906 @default.
- W3016573911 hasConcept C199360897 @default.
- W3016573911 hasConcept C24574437 @default.
- W3016573911 hasConcept C2779843651 @default.
- W3016573911 hasConcept C28490314 @default.
- W3016573911 hasConcept C29648211 @default.
- W3016573911 hasConcept C3018011982 @default.