Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016631309> ?p ?o ?g. }
- W3016631309 endingPage "114587" @default.
- W3016631309 startingPage "114587" @default.
- W3016631309 abstract "Narrow city streets surrounded by tall buildings are favorable to inducing a general effect of a “canyon” in which pollutants strongly accumulate in a relatively small area because of weak or inexistent ventilation. In this study, levels of nitrogen-oxide (NO2), elemental carbon (EC) and organic carbon (OC) mass concentrations in PM10 particles were determined to compare between seasons and different years. Daily samples were collected at one such street canyon location in the center of Zagreb in 2011, 2012 and 2013. By applying machine learning methods we showed seasonal and yearly variations of mass concentrations for carbon species in PM10 and NO2, as well as their covariations and relationships. Furthermore, we compared the predictive capabilities of five regressors (Lasso, Random Forest, AdaBoost, Support Vector Machine and Partials Least squares) with Lasso regression being the overall best performing algorithm. By showing the feature importance for each model, we revealed true predictors per target. These measurements and application of machine learning of pollutants were done for the first time at a street canyon site in the city of Zagreb, Croatia." @default.
- W3016631309 created "2020-04-24" @default.
- W3016631309 creator A5010065180 @default.
- W3016631309 creator A5020245549 @default.
- W3016631309 creator A5031895469 @default.
- W3016631309 creator A5079928612 @default.
- W3016631309 creator A5083476513 @default.
- W3016631309 date "2020-08-01" @default.
- W3016631309 modified "2023-09-25" @default.
- W3016631309 title "Applying machine learning methods to better understand, model and estimate mass concentrations of traffic-related pollutants at a typical street canyon" @default.
- W3016631309 cites W1903506013 @default.
- W3016631309 cites W1964176024 @default.
- W3016631309 cites W1966980441 @default.
- W3016631309 cites W1968167212 @default.
- W3016631309 cites W1974284277 @default.
- W3016631309 cites W1981854537 @default.
- W3016631309 cites W1988006389 @default.
- W3016631309 cites W1994124263 @default.
- W3016631309 cites W1995160072 @default.
- W3016631309 cites W2004129422 @default.
- W3016631309 cites W2006961207 @default.
- W3016631309 cites W2008345783 @default.
- W3016631309 cites W2011301426 @default.
- W3016631309 cites W2012844420 @default.
- W3016631309 cites W2022084776 @default.
- W3016631309 cites W2025772648 @default.
- W3016631309 cites W2038395162 @default.
- W3016631309 cites W2046504998 @default.
- W3016631309 cites W2068074302 @default.
- W3016631309 cites W2073437697 @default.
- W3016631309 cites W2074912117 @default.
- W3016631309 cites W2085610017 @default.
- W3016631309 cites W2087586939 @default.
- W3016631309 cites W2094984703 @default.
- W3016631309 cites W2100801413 @default.
- W3016631309 cites W2114650750 @default.
- W3016631309 cites W2115380778 @default.
- W3016631309 cites W2118528345 @default.
- W3016631309 cites W2137382327 @default.
- W3016631309 cites W2146292423 @default.
- W3016631309 cites W2151302463 @default.
- W3016631309 cites W2158863190 @default.
- W3016631309 cites W2159493555 @default.
- W3016631309 cites W2275636011 @default.
- W3016631309 cites W2336875043 @default.
- W3016631309 cites W2342249984 @default.
- W3016631309 cites W2473938143 @default.
- W3016631309 cites W2502584194 @default.
- W3016631309 cites W2519331123 @default.
- W3016631309 cites W2527497747 @default.
- W3016631309 cites W2552942965 @default.
- W3016631309 cites W2578569841 @default.
- W3016631309 cites W2583949775 @default.
- W3016631309 cites W2586350098 @default.
- W3016631309 cites W2586995550 @default.
- W3016631309 cites W2600696521 @default.
- W3016631309 cites W2732289267 @default.
- W3016631309 cites W2763148304 @default.
- W3016631309 cites W2772764801 @default.
- W3016631309 cites W2780677459 @default.
- W3016631309 cites W2783684743 @default.
- W3016631309 cites W2786588599 @default.
- W3016631309 cites W2813865948 @default.
- W3016631309 cites W2890417937 @default.
- W3016631309 cites W2896695914 @default.
- W3016631309 cites W2911964244 @default.
- W3016631309 cites W2920795827 @default.
- W3016631309 cites W3006614102 @default.
- W3016631309 cites W4240472587 @default.
- W3016631309 cites W882644830 @default.
- W3016631309 doi "https://doi.org/10.1016/j.envpol.2020.114587" @default.
- W3016631309 hasPublicationYear "2020" @default.
- W3016631309 type Work @default.
- W3016631309 sameAs 3016631309 @default.
- W3016631309 citedByCount "25" @default.
- W3016631309 countsByYear W30166313092020 @default.
- W3016631309 countsByYear W30166313092021 @default.
- W3016631309 countsByYear W30166313092022 @default.
- W3016631309 countsByYear W30166313092023 @default.
- W3016631309 crossrefType "journal-article" @default.
- W3016631309 hasAuthorship W3016631309A5010065180 @default.
- W3016631309 hasAuthorship W3016631309A5020245549 @default.
- W3016631309 hasAuthorship W3016631309A5031895469 @default.
- W3016631309 hasAuthorship W3016631309A5079928612 @default.
- W3016631309 hasAuthorship W3016631309A5083476513 @default.
- W3016631309 hasConcept C105795698 @default.
- W3016631309 hasConcept C119857082 @default.
- W3016631309 hasConcept C122048520 @default.
- W3016631309 hasConcept C12267149 @default.
- W3016631309 hasConcept C127313418 @default.
- W3016631309 hasConcept C136764020 @default.
- W3016631309 hasConcept C153294291 @default.
- W3016631309 hasConcept C169258074 @default.
- W3016631309 hasConcept C18903297 @default.
- W3016631309 hasConcept C205649164 @default.
- W3016631309 hasConcept C33923547 @default.
- W3016631309 hasConcept C37616216 @default.
- W3016631309 hasConcept C39432304 @default.