Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016650245> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3016650245 abstract "In the recent decades, cancer has become a major cause of mortality worldwide. Predicting cancer cells and tumors at the early stages can be treated. Computer-aided diagnosis systems are used to analyze the MRI and CT scan images. However, it is inefficient to predict the disease as it works with high-level image features. It is important to extract the low-level feature of the image details in order to improve the prediction accuracy. Deep learning models are efficient in extracting the low-level image features. A convolutional neural network (CNN) is one of the popular deep learning architectures efficient in feature extraction. In this paper, the various types of CNN models are discussed. A comparative study of different CNN models along with segmentation and classification models are discussed. Finally, the prediction accuracy of CNN architectures with their dataset details are analyzed." @default.
- W3016650245 created "2020-04-24" @default.
- W3016650245 creator A5000403884 @default.
- W3016650245 creator A5042024872 @default.
- W3016650245 creator A5044595104 @default.
- W3016650245 date "2019-05-01" @default.
- W3016650245 modified "2023-10-06" @default.
- W3016650245 title "Comparative Study of Various Deep Convolutional Neural Networks in the Early Prediction of Cancer" @default.
- W3016650245 cites W1884191083 @default.
- W3016650245 cites W2293063104 @default.
- W3016650245 cites W2310992461 @default.
- W3016650245 cites W2565773780 @default.
- W3016650245 cites W2611912209 @default.
- W3016650245 cites W2699704795 @default.
- W3016650245 cites W2743635406 @default.
- W3016650245 cites W2755012395 @default.
- W3016650245 cites W2780099243 @default.
- W3016650245 cites W2780428230 @default.
- W3016650245 cites W2781583846 @default.
- W3016650245 cites W2783710041 @default.
- W3016650245 cites W2793703004 @default.
- W3016650245 cites W2806695489 @default.
- W3016650245 cites W2886205008 @default.
- W3016650245 cites W2892014208 @default.
- W3016650245 cites W2899015155 @default.
- W3016650245 cites W2900144270 @default.
- W3016650245 cites W2900224209 @default.
- W3016650245 cites W2903335542 @default.
- W3016650245 cites W2904144652 @default.
- W3016650245 cites W3102737931 @default.
- W3016650245 doi "https://doi.org/10.1109/iccs45141.2019.9065445" @default.
- W3016650245 hasPublicationYear "2019" @default.
- W3016650245 type Work @default.
- W3016650245 sameAs 3016650245 @default.
- W3016650245 citedByCount "4" @default.
- W3016650245 countsByYear W30166502452022 @default.
- W3016650245 countsByYear W30166502452023 @default.
- W3016650245 crossrefType "proceedings-article" @default.
- W3016650245 hasAuthorship W3016650245A5000403884 @default.
- W3016650245 hasAuthorship W3016650245A5042024872 @default.
- W3016650245 hasAuthorship W3016650245A5044595104 @default.
- W3016650245 hasConcept C108583219 @default.
- W3016650245 hasConcept C115961682 @default.
- W3016650245 hasConcept C119857082 @default.
- W3016650245 hasConcept C124504099 @default.
- W3016650245 hasConcept C138885662 @default.
- W3016650245 hasConcept C153180895 @default.
- W3016650245 hasConcept C154945302 @default.
- W3016650245 hasConcept C2776401178 @default.
- W3016650245 hasConcept C41008148 @default.
- W3016650245 hasConcept C41895202 @default.
- W3016650245 hasConcept C50644808 @default.
- W3016650245 hasConcept C52622490 @default.
- W3016650245 hasConcept C75294576 @default.
- W3016650245 hasConcept C81363708 @default.
- W3016650245 hasConcept C89600930 @default.
- W3016650245 hasConceptScore W3016650245C108583219 @default.
- W3016650245 hasConceptScore W3016650245C115961682 @default.
- W3016650245 hasConceptScore W3016650245C119857082 @default.
- W3016650245 hasConceptScore W3016650245C124504099 @default.
- W3016650245 hasConceptScore W3016650245C138885662 @default.
- W3016650245 hasConceptScore W3016650245C153180895 @default.
- W3016650245 hasConceptScore W3016650245C154945302 @default.
- W3016650245 hasConceptScore W3016650245C2776401178 @default.
- W3016650245 hasConceptScore W3016650245C41008148 @default.
- W3016650245 hasConceptScore W3016650245C41895202 @default.
- W3016650245 hasConceptScore W3016650245C50644808 @default.
- W3016650245 hasConceptScore W3016650245C52622490 @default.
- W3016650245 hasConceptScore W3016650245C75294576 @default.
- W3016650245 hasConceptScore W3016650245C81363708 @default.
- W3016650245 hasConceptScore W3016650245C89600930 @default.
- W3016650245 hasLocation W30166502451 @default.
- W3016650245 hasOpenAccess W3016650245 @default.
- W3016650245 hasPrimaryLocation W30166502451 @default.
- W3016650245 hasRelatedWork W2279398222 @default.
- W3016650245 hasRelatedWork W2546942002 @default.
- W3016650245 hasRelatedWork W2766604260 @default.
- W3016650245 hasRelatedWork W2946016983 @default.
- W3016650245 hasRelatedWork W2960184797 @default.
- W3016650245 hasRelatedWork W2986507176 @default.
- W3016650245 hasRelatedWork W3156786002 @default.
- W3016650245 hasRelatedWork W4285827401 @default.
- W3016650245 hasRelatedWork W4299822940 @default.
- W3016650245 hasRelatedWork W4366492315 @default.
- W3016650245 isParatext "false" @default.
- W3016650245 isRetracted "false" @default.
- W3016650245 magId "3016650245" @default.
- W3016650245 workType "article" @default.