Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016694273> ?p ?o ?g. }
- W3016694273 endingPage "1979" @default.
- W3016694273 startingPage "1979" @default.
- W3016694273 abstract "A modern renewable energy forecasting system blends physical models with artificial intelligence to aid in system operation and grid integration. This paper describes such a system being developed for the Shagaya Renewable Energy Park, which is being developed by the State of Kuwait. The park contains wind turbines, photovoltaic panels, and concentrated solar renewable energy technologies with storage capabilities. The fully operational Kuwait Renewable Energy Prediction System (KREPS) employs artificial intelligence (AI) in multiple portions of the forecasting structure and processes, both for short-range forecasting (i.e., the next six hours) as well as for forecasts several days out. These AI methods work synergistically with the dynamical/physical models employed. This paper briefly describes the methodology used for each of the AI methods, how they are blended, and provides a preliminary assessment of their relative value to the prediction system. Each operational AI component adds value to the system. KREPS is an example of a fully integrated state-of-the-science forecasting system for renewable energy." @default.
- W3016694273 created "2020-04-24" @default.
- W3016694273 creator A5005599713 @default.
- W3016694273 creator A5006628085 @default.
- W3016694273 creator A5008543500 @default.
- W3016694273 creator A5017640550 @default.
- W3016694273 creator A5018688662 @default.
- W3016694273 creator A5043793511 @default.
- W3016694273 creator A5045356327 @default.
- W3016694273 creator A5051722266 @default.
- W3016694273 creator A5053278929 @default.
- W3016694273 creator A5069116861 @default.
- W3016694273 creator A5075139751 @default.
- W3016694273 creator A5084712610 @default.
- W3016694273 creator A5043587173 @default.
- W3016694273 date "2020-04-16" @default.
- W3016694273 modified "2023-10-06" @default.
- W3016694273 title "Combining Artificial Intelligence with Physics-Based Methods for Probabilistic Renewable Energy Forecasting" @default.
- W3016694273 cites W1120922828 @default.
- W3016694273 cites W1667277804 @default.
- W3016694273 cites W1837215672 @default.
- W3016694273 cites W1909551488 @default.
- W3016694273 cites W1989938710 @default.
- W3016694273 cites W2026058014 @default.
- W3016694273 cites W2067019903 @default.
- W3016694273 cites W2069563189 @default.
- W3016694273 cites W2099108051 @default.
- W3016694273 cites W2127813995 @default.
- W3016694273 cites W2166889509 @default.
- W3016694273 cites W2170860720 @default.
- W3016694273 cites W2219210481 @default.
- W3016694273 cites W2342206313 @default.
- W3016694273 cites W2419179667 @default.
- W3016694273 cites W2530999883 @default.
- W3016694273 cites W2569758175 @default.
- W3016694273 cites W2590910929 @default.
- W3016694273 cites W2626857925 @default.
- W3016694273 cites W2730753647 @default.
- W3016694273 cites W2750443913 @default.
- W3016694273 cites W2755104498 @default.
- W3016694273 cites W2766507774 @default.
- W3016694273 cites W2781647960 @default.
- W3016694273 cites W2913429684 @default.
- W3016694273 cites W2945926871 @default.
- W3016694273 cites W2971984598 @default.
- W3016694273 cites W2981640012 @default.
- W3016694273 cites W2990600100 @default.
- W3016694273 cites W3005075053 @default.
- W3016694273 cites W3010710435 @default.
- W3016694273 cites W3024925411 @default.
- W3016694273 cites W3046810202 @default.
- W3016694273 cites W3085710010 @default.
- W3016694273 doi "https://doi.org/10.3390/en13081979" @default.
- W3016694273 hasPublicationYear "2020" @default.
- W3016694273 type Work @default.
- W3016694273 sameAs 3016694273 @default.
- W3016694273 citedByCount "16" @default.
- W3016694273 countsByYear W30166942732020 @default.
- W3016694273 countsByYear W30166942732021 @default.
- W3016694273 countsByYear W30166942732022 @default.
- W3016694273 countsByYear W30166942732023 @default.
- W3016694273 crossrefType "journal-article" @default.
- W3016694273 hasAuthorship W3016694273A5005599713 @default.
- W3016694273 hasAuthorship W3016694273A5006628085 @default.
- W3016694273 hasAuthorship W3016694273A5008543500 @default.
- W3016694273 hasAuthorship W3016694273A5017640550 @default.
- W3016694273 hasAuthorship W3016694273A5018688662 @default.
- W3016694273 hasAuthorship W3016694273A5043587173 @default.
- W3016694273 hasAuthorship W3016694273A5043793511 @default.
- W3016694273 hasAuthorship W3016694273A5045356327 @default.
- W3016694273 hasAuthorship W3016694273A5051722266 @default.
- W3016694273 hasAuthorship W3016694273A5053278929 @default.
- W3016694273 hasAuthorship W3016694273A5069116861 @default.
- W3016694273 hasAuthorship W3016694273A5075139751 @default.
- W3016694273 hasAuthorship W3016694273A5084712610 @default.
- W3016694273 hasBestOaLocation W30166942731 @default.
- W3016694273 hasConcept C119599485 @default.
- W3016694273 hasConcept C122282355 @default.
- W3016694273 hasConcept C127413603 @default.
- W3016694273 hasConcept C154945302 @default.
- W3016694273 hasConcept C187691185 @default.
- W3016694273 hasConcept C188573790 @default.
- W3016694273 hasConcept C2524010 @default.
- W3016694273 hasConcept C33923547 @default.
- W3016694273 hasConcept C41008148 @default.
- W3016694273 hasConcept C41291067 @default.
- W3016694273 hasConcept C49937458 @default.
- W3016694273 hasConcept C50644808 @default.
- W3016694273 hasConcept C78600449 @default.
- W3016694273 hasConceptScore W3016694273C119599485 @default.
- W3016694273 hasConceptScore W3016694273C122282355 @default.
- W3016694273 hasConceptScore W3016694273C127413603 @default.
- W3016694273 hasConceptScore W3016694273C154945302 @default.
- W3016694273 hasConceptScore W3016694273C187691185 @default.
- W3016694273 hasConceptScore W3016694273C188573790 @default.
- W3016694273 hasConceptScore W3016694273C2524010 @default.
- W3016694273 hasConceptScore W3016694273C33923547 @default.
- W3016694273 hasConceptScore W3016694273C41008148 @default.