Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016719170> ?p ?o ?g. }
- W3016719170 endingPage "240" @default.
- W3016719170 startingPage "228" @default.
- W3016719170 abstract "Abstract High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination ( R adj 2 ) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with R adj 2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image." @default.
- W3016719170 created "2020-04-24" @default.
- W3016719170 creator A5033030302 @default.
- W3016719170 creator A5060468191 @default.
- W3016719170 creator A5077537078 @default.
- W3016719170 date "2020-08-01" @default.
- W3016719170 modified "2023-10-16" @default.
- W3016719170 title "Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data" @default.
- W3016719170 cites W1978648105 @default.
- W3016719170 cites W1982910530 @default.
- W3016719170 cites W1988461837 @default.
- W3016719170 cites W1988938321 @default.
- W3016719170 cites W1998732832 @default.
- W3016719170 cites W2008302332 @default.
- W3016719170 cites W2011823175 @default.
- W3016719170 cites W2017335769 @default.
- W3016719170 cites W2021662293 @default.
- W3016719170 cites W2027442956 @default.
- W3016719170 cites W2027522974 @default.
- W3016719170 cites W2039258526 @default.
- W3016719170 cites W2040853600 @default.
- W3016719170 cites W2045935471 @default.
- W3016719170 cites W2045952723 @default.
- W3016719170 cites W2046954692 @default.
- W3016719170 cites W2054883571 @default.
- W3016719170 cites W2059309067 @default.
- W3016719170 cites W2063907334 @default.
- W3016719170 cites W2069286951 @default.
- W3016719170 cites W2074820366 @default.
- W3016719170 cites W2078079418 @default.
- W3016719170 cites W2089454950 @default.
- W3016719170 cites W2090075242 @default.
- W3016719170 cites W2091273352 @default.
- W3016719170 cites W2094708176 @default.
- W3016719170 cites W2098320370 @default.
- W3016719170 cites W2123366256 @default.
- W3016719170 cites W2124456247 @default.
- W3016719170 cites W2126819771 @default.
- W3016719170 cites W2131070146 @default.
- W3016719170 cites W2132424470 @default.
- W3016719170 cites W2161513458 @default.
- W3016719170 cites W2218047931 @default.
- W3016719170 cites W2234863202 @default.
- W3016719170 cites W2261059368 @default.
- W3016719170 cites W2618388842 @default.
- W3016719170 cites W2744106438 @default.
- W3016719170 cites W2789365730 @default.
- W3016719170 cites W2795466254 @default.
- W3016719170 cites W2885406917 @default.
- W3016719170 cites W2911964244 @default.
- W3016719170 cites W2955791628 @default.
- W3016719170 cites W2960710118 @default.
- W3016719170 cites W2995678734 @default.
- W3016719170 cites W3000978536 @default.
- W3016719170 doi "https://doi.org/10.1016/j.isprsjprs.2020.06.008" @default.
- W3016719170 hasPublicationYear "2020" @default.
- W3016719170 type Work @default.
- W3016719170 sameAs 3016719170 @default.
- W3016719170 citedByCount "13" @default.
- W3016719170 countsByYear W30167191702021 @default.
- W3016719170 countsByYear W30167191702022 @default.
- W3016719170 countsByYear W30167191702023 @default.
- W3016719170 crossrefType "journal-article" @default.
- W3016719170 hasAuthorship W3016719170A5033030302 @default.
- W3016719170 hasAuthorship W3016719170A5060468191 @default.
- W3016719170 hasAuthorship W3016719170A5077537078 @default.
- W3016719170 hasBestOaLocation W30167191701 @default.
- W3016719170 hasConcept C100970517 @default.
- W3016719170 hasConcept C111919701 @default.
- W3016719170 hasConcept C127313418 @default.
- W3016719170 hasConcept C153294291 @default.
- W3016719170 hasConcept C205649164 @default.
- W3016719170 hasConcept C2778755073 @default.
- W3016719170 hasConcept C3020199158 @default.
- W3016719170 hasConcept C39432304 @default.
- W3016719170 hasConcept C41008148 @default.
- W3016719170 hasConcept C49204034 @default.
- W3016719170 hasConcept C58640448 @default.
- W3016719170 hasConcept C62649853 @default.
- W3016719170 hasConcept C79974875 @default.
- W3016719170 hasConceptScore W3016719170C100970517 @default.
- W3016719170 hasConceptScore W3016719170C111919701 @default.
- W3016719170 hasConceptScore W3016719170C127313418 @default.
- W3016719170 hasConceptScore W3016719170C153294291 @default.
- W3016719170 hasConceptScore W3016719170C205649164 @default.
- W3016719170 hasConceptScore W3016719170C2778755073 @default.
- W3016719170 hasConceptScore W3016719170C3020199158 @default.
- W3016719170 hasConceptScore W3016719170C39432304 @default.
- W3016719170 hasConceptScore W3016719170C41008148 @default.
- W3016719170 hasConceptScore W3016719170C49204034 @default.
- W3016719170 hasConceptScore W3016719170C58640448 @default.
- W3016719170 hasConceptScore W3016719170C62649853 @default.
- W3016719170 hasConceptScore W3016719170C79974875 @default.
- W3016719170 hasLocation W30167191701 @default.
- W3016719170 hasLocation W30167191702 @default.
- W3016719170 hasOpenAccess W3016719170 @default.
- W3016719170 hasPrimaryLocation W30167191701 @default.
- W3016719170 hasRelatedWork W2048509577 @default.