Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016747886> ?p ?o ?g. }
- W3016747886 endingPage "26" @default.
- W3016747886 startingPage "20" @default.
- W3016747886 abstract "Evaluating the number of hidden neurons necessary for solving of pattern recognition and classification tasks is one of the key problems in artificial neural networks. Multilayer perceptron is the most useful artificial neural network to estimate the functional structure in classification. In this paper, we show that artificial neural network with a two hidden layer feed forward neural network with d inputs, d neurons in the first hidden layer, 2d+2 neurons in the second hidden layer, k outputs and with a sigmoidal infinitely differentiable function can solve classification and pattern problems with arbitrary accuracy. This result can be applied to design pattern recognition and classification models with optimal structure in the number of hidden neurons and hidden layers. The experimental results over well-known benchmark datasets show that the convergence and the accuracy of the proposed model of artificial neural network are acceptable. Findings in this paper are experimentally analyzed on four different datasets from machine learning repository." @default.
- W3016747886 created "2020-04-24" @default.
- W3016747886 creator A5040988749 @default.
- W3016747886 creator A5055989706 @default.
- W3016747886 date "2020-03-31" @default.
- W3016747886 modified "2023-10-01" @default.
- W3016747886 title "APPROACH TO THE SYNTHESIS OF NEURAL NETWORK STRUCTURE DURING CLASSIFICATION" @default.
- W3016747886 cites W1949720511 @default.
- W3016747886 cites W1967194918 @default.
- W3016747886 cites W1978397327 @default.
- W3016747886 cites W1988019790 @default.
- W3016747886 cites W2034672247 @default.
- W3016747886 cites W2038266964 @default.
- W3016747886 cites W2081631884 @default.
- W3016747886 cites W2104714048 @default.
- W3016747886 cites W2105768802 @default.
- W3016747886 cites W2111979893 @default.
- W3016747886 cites W2126685080 @default.
- W3016747886 cites W2145882675 @default.
- W3016747886 cites W2151029520 @default.
- W3016747886 cites W2152593035 @default.
- W3016747886 cites W2158581396 @default.
- W3016747886 cites W2167982865 @default.
- W3016747886 cites W2169976759 @default.
- W3016747886 cites W2565516711 @default.
- W3016747886 cites W2736199118 @default.
- W3016747886 cites W2739681370 @default.
- W3016747886 cites W2767547957 @default.
- W3016747886 cites W2770204185 @default.
- W3016747886 cites W2791583160 @default.
- W3016747886 cites W2792384468 @default.
- W3016747886 cites W2809254203 @default.
- W3016747886 cites W2912197706 @default.
- W3016747886 cites W2941078097 @default.
- W3016747886 cites W2955053048 @default.
- W3016747886 cites W2962715412 @default.
- W3016747886 cites W2964118901 @default.
- W3016747886 cites W4210257598 @default.
- W3016747886 cites W2096013212 @default.
- W3016747886 doi "https://doi.org/10.47839/ijc.19.1.1689" @default.
- W3016747886 hasPublicationYear "2020" @default.
- W3016747886 type Work @default.
- W3016747886 sameAs 3016747886 @default.
- W3016747886 citedByCount "5" @default.
- W3016747886 countsByYear W30167478862021 @default.
- W3016747886 crossrefType "journal-article" @default.
- W3016747886 hasAuthorship W3016747886A5040988749 @default.
- W3016747886 hasAuthorship W3016747886A5055989706 @default.
- W3016747886 hasBestOaLocation W30167478861 @default.
- W3016747886 hasConcept C119857082 @default.
- W3016747886 hasConcept C13280743 @default.
- W3016747886 hasConcept C14036430 @default.
- W3016747886 hasConcept C153180895 @default.
- W3016747886 hasConcept C154945302 @default.
- W3016747886 hasConcept C162324750 @default.
- W3016747886 hasConcept C175202392 @default.
- W3016747886 hasConcept C178790620 @default.
- W3016747886 hasConcept C179717631 @default.
- W3016747886 hasConcept C185592680 @default.
- W3016747886 hasConcept C185798385 @default.
- W3016747886 hasConcept C205649164 @default.
- W3016747886 hasConcept C26517878 @default.
- W3016747886 hasConcept C2777303404 @default.
- W3016747886 hasConcept C2779227376 @default.
- W3016747886 hasConcept C38365724 @default.
- W3016747886 hasConcept C38652104 @default.
- W3016747886 hasConcept C41008148 @default.
- W3016747886 hasConcept C50522688 @default.
- W3016747886 hasConcept C50644808 @default.
- W3016747886 hasConcept C60908668 @default.
- W3016747886 hasConcept C78458016 @default.
- W3016747886 hasConcept C81388566 @default.
- W3016747886 hasConcept C86803240 @default.
- W3016747886 hasConceptScore W3016747886C119857082 @default.
- W3016747886 hasConceptScore W3016747886C13280743 @default.
- W3016747886 hasConceptScore W3016747886C14036430 @default.
- W3016747886 hasConceptScore W3016747886C153180895 @default.
- W3016747886 hasConceptScore W3016747886C154945302 @default.
- W3016747886 hasConceptScore W3016747886C162324750 @default.
- W3016747886 hasConceptScore W3016747886C175202392 @default.
- W3016747886 hasConceptScore W3016747886C178790620 @default.
- W3016747886 hasConceptScore W3016747886C179717631 @default.
- W3016747886 hasConceptScore W3016747886C185592680 @default.
- W3016747886 hasConceptScore W3016747886C185798385 @default.
- W3016747886 hasConceptScore W3016747886C205649164 @default.
- W3016747886 hasConceptScore W3016747886C26517878 @default.
- W3016747886 hasConceptScore W3016747886C2777303404 @default.
- W3016747886 hasConceptScore W3016747886C2779227376 @default.
- W3016747886 hasConceptScore W3016747886C38365724 @default.
- W3016747886 hasConceptScore W3016747886C38652104 @default.
- W3016747886 hasConceptScore W3016747886C41008148 @default.
- W3016747886 hasConceptScore W3016747886C50522688 @default.
- W3016747886 hasConceptScore W3016747886C50644808 @default.
- W3016747886 hasConceptScore W3016747886C60908668 @default.
- W3016747886 hasConceptScore W3016747886C78458016 @default.
- W3016747886 hasConceptScore W3016747886C81388566 @default.
- W3016747886 hasConceptScore W3016747886C86803240 @default.
- W3016747886 hasLocation W30167478861 @default.