Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016761035> ?p ?o ?g. }
- W3016761035 endingPage "164737" @default.
- W3016761035 startingPage "164737" @default.
- W3016761035 abstract "The percentage of adulterated meat can be hardly recognized by a visual appraisal of their images. In this paper, a novel approach was proposed to combine visualization with pixel discrimination for the purpose of evaluating the adulteration level. Eleven samples (three pure beef samples, three pure chicken samples and five different adulteration level samples) were prepared for hyperspectral imaging (HSI). Each pixel in the hyperspectral images was classified by the Gaussian distribution of regression coefficients (GD-RC) model with three different variables input methods (Each kind of pure samples’ spectra (the unitary GD-RC models) and two kinds of pure samples’ spectra together (the binary GD-RC models) were considered as independent variables, respectively.). Compared with the unitary GD-RC models, the binary GD-RC model had the best performance. The average error (ARE), the correlation coefficient (r), and the root-mean-square error of prediction (RMSEP) of the best method were 2.8 %, 0.9831 and 0.0319, respectively. The results demonstrated that the GD-RC model could be used to estimate the adulteration levels of meat samples through the visual appraisal of their images. Therefore, HSI combined with the proposed method can be a powerful and promising tool for meat adulteration visualization." @default.
- W3016761035 created "2020-04-24" @default.
- W3016761035 creator A5006117308 @default.
- W3016761035 creator A5011550152 @default.
- W3016761035 creator A5018881082 @default.
- W3016761035 creator A5027263426 @default.
- W3016761035 creator A5031297357 @default.
- W3016761035 creator A5066020693 @default.
- W3016761035 creator A5078499467 @default.
- W3016761035 creator A5082484709 @default.
- W3016761035 creator A5091510615 @default.
- W3016761035 date "2020-06-01" @default.
- W3016761035 modified "2023-09-28" @default.
- W3016761035 title "Visualization accuracy improvement of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging" @default.
- W3016761035 cites W1146069309 @default.
- W3016761035 cites W1852553807 @default.
- W3016761035 cites W188367233 @default.
- W3016761035 cites W1967554761 @default.
- W3016761035 cites W1972399486 @default.
- W3016761035 cites W1972842345 @default.
- W3016761035 cites W1987759480 @default.
- W3016761035 cites W1987891903 @default.
- W3016761035 cites W1989329966 @default.
- W3016761035 cites W1995283715 @default.
- W3016761035 cites W1998030312 @default.
- W3016761035 cites W2018546263 @default.
- W3016761035 cites W2031132062 @default.
- W3016761035 cites W2032632935 @default.
- W3016761035 cites W2039775511 @default.
- W3016761035 cites W2040629518 @default.
- W3016761035 cites W2046133769 @default.
- W3016761035 cites W2046653646 @default.
- W3016761035 cites W2051556092 @default.
- W3016761035 cites W2068290209 @default.
- W3016761035 cites W2072329731 @default.
- W3016761035 cites W2116146912 @default.
- W3016761035 cites W2170263865 @default.
- W3016761035 cites W2191564704 @default.
- W3016761035 cites W2228157907 @default.
- W3016761035 cites W2288639384 @default.
- W3016761035 cites W2340760070 @default.
- W3016761035 cites W2623839652 @default.
- W3016761035 cites W2745826630 @default.
- W3016761035 cites W2806054644 @default.
- W3016761035 cites W2806067324 @default.
- W3016761035 cites W2897615195 @default.
- W3016761035 cites W2898792813 @default.
- W3016761035 cites W2914424871 @default.
- W3016761035 cites W2954110294 @default.
- W3016761035 cites W601411035 @default.
- W3016761035 doi "https://doi.org/10.1016/j.ijleo.2020.164737" @default.
- W3016761035 hasPublicationYear "2020" @default.
- W3016761035 type Work @default.
- W3016761035 sameAs 3016761035 @default.
- W3016761035 citedByCount "9" @default.
- W3016761035 countsByYear W30167610352020 @default.
- W3016761035 countsByYear W30167610352021 @default.
- W3016761035 countsByYear W30167610352022 @default.
- W3016761035 countsByYear W30167610352023 @default.
- W3016761035 crossrefType "journal-article" @default.
- W3016761035 hasAuthorship W3016761035A5006117308 @default.
- W3016761035 hasAuthorship W3016761035A5011550152 @default.
- W3016761035 hasAuthorship W3016761035A5018881082 @default.
- W3016761035 hasAuthorship W3016761035A5027263426 @default.
- W3016761035 hasAuthorship W3016761035A5031297357 @default.
- W3016761035 hasAuthorship W3016761035A5066020693 @default.
- W3016761035 hasAuthorship W3016761035A5078499467 @default.
- W3016761035 hasAuthorship W3016761035A5082484709 @default.
- W3016761035 hasAuthorship W3016761035A5091510615 @default.
- W3016761035 hasConcept C105795698 @default.
- W3016761035 hasConcept C147597530 @default.
- W3016761035 hasConcept C153180895 @default.
- W3016761035 hasConcept C154945302 @default.
- W3016761035 hasConcept C159078339 @default.
- W3016761035 hasConcept C160633673 @default.
- W3016761035 hasConcept C163716315 @default.
- W3016761035 hasConcept C185592680 @default.
- W3016761035 hasConcept C186060115 @default.
- W3016761035 hasConcept C33923547 @default.
- W3016761035 hasConcept C36464697 @default.
- W3016761035 hasConcept C41008148 @default.
- W3016761035 hasConcept C48372109 @default.
- W3016761035 hasConcept C83546350 @default.
- W3016761035 hasConcept C86803240 @default.
- W3016761035 hasConcept C94375191 @default.
- W3016761035 hasConceptScore W3016761035C105795698 @default.
- W3016761035 hasConceptScore W3016761035C147597530 @default.
- W3016761035 hasConceptScore W3016761035C153180895 @default.
- W3016761035 hasConceptScore W3016761035C154945302 @default.
- W3016761035 hasConceptScore W3016761035C159078339 @default.
- W3016761035 hasConceptScore W3016761035C160633673 @default.
- W3016761035 hasConceptScore W3016761035C163716315 @default.
- W3016761035 hasConceptScore W3016761035C185592680 @default.
- W3016761035 hasConceptScore W3016761035C186060115 @default.
- W3016761035 hasConceptScore W3016761035C33923547 @default.
- W3016761035 hasConceptScore W3016761035C36464697 @default.
- W3016761035 hasConceptScore W3016761035C41008148 @default.
- W3016761035 hasConceptScore W3016761035C48372109 @default.